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Mobile Autonomous Router System for Dynamic
(Re)formation of Wireless Relay Networks

Kyu-Han Kim, Member, IEEE Kang G. Shin, Fellow, IEEE Dragoş Niculescu

Abstract—Multi-hop wireless relays can extend the area of
network connectivity instantly and efficiently. However, due to
the spatial dependency of wireless link-quality, the deployment
of relay nodes requires extensive, expensive measurement and
management efforts. This paper presents a Mobile Autonomous
Router System, (MARS) through which a relay router au-
tonomously seeks and adjusts the best “reception” position for
itself and cooperatively forms a string-type relay network with
other neighboring routers. Specifically, MARS (i) accurately
characterizes spatial link-quality through a new measurement
technique, (ii) effectively probes/optimizes node positioning via
a spatial probing algorithm, and (iii) maintains error-tolerant
position information via an inexpensive positioning algorithm.
MARS has been prototyped with both a commodity mobile
robot and a wireless router with IEEE 802.11 cards. Our
experimental evaluation of both the MARS prototype and ns-
2-based simulation show that MARS achieves an average of
95% accuracy in link-quality measurements, and reduces the
measurement effort necessary for the optimization of a node’s
location by two-thirds, compared to exhaustive spatial probing.

Index Terms—Wireless relay networks, robot-based wireless
router, wireless link-quality measurement, IEEE 802.11

I. INTRODUCTION

Over the last decade or so, wireless relay networks have
attracted considerable attention due to their potential for in-
stantly and inexpensively extending network coverage [1], [2].
For example, relay nodes can be deployed in a string or a tree
topology to existing wireless backhaul networks for emergency
response or outdoor events. However, channel fading and
shadowing often degrade the quality of wireless links and
require time-consuming and expensive network deployment
and management efforts, especially for manual adjustment of
nodes’ placement and configuration [3].

Significant efforts have been made to improve Quality-of-
Service (QoS) and reduce management costs of wireless relay
networks. For example, measurement-driven deployment of
relay nodes determines their placement positions that meet the
required network QoS [4]. Rate-adaptation and transmission-
power-control algorithms allow for dynamic selection of mod-
ulation schemes and transmit-power levels at fixed positions
[5], [6]. Multiple-input-multiple-output (MIMO) or multiple
interfaces enable a node to exploit spatial diversity by adap-
tively choosing the best antenna or antenna element [7], [8].
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In spite of these efforts, wireless relay networks still suffer
from several fundamental limitations as follows. First, changes
in the physical environment of a wireless relay network (e.g.,
due to dynamic obstacles and interferences) often calls for
manual link-quality measurement and node relocation over
a large coverage area which are tedious, time-consuming
and costly. Second, even if relay nodes can make simple
movements to improve link bandwidth, these adjustments
determined by geographic distance or node density are not
guaranteed to meet the overall QoS requirement of networks
[9], [10]. Third, relay nodes may be able to relocate themselves
“optimally” (in some sense) by using simple Signal-to-Noise
Ratio (SNR) or traffic volume information. However, accurate
characterization of spatial wireless link-quality along with
efficient node relocation is key to the efficient (re-)formation
of relay networks [11].

In this paper, we study the feasibility of using a commodity
mobile robot for addressing some of the limitations mentioned
above. Specifically, we propose a mobile autonomous router
system (MARS) that enables a wireless relay node to (i)
characterize wireless link conditions over the physical space
and (ii) seek and relocate to, the best reception position
to form string-type relay networks. Specifically, MARS is
equipped with a measurement protocol that defines and charac-
terizes spatial wireless link-quality. This measurement protocol
controls each MARS node, mounted on a mobile robot, to
move and measure wireless link-quality over the deployment
area. Furthermore, based on the raw measurement results, the
protocol extracts unique correlations of link-quality with envi-
ronmental factors, such as distance, obstacles, or interference
sources, which are useful in reducing the measurement space
(see Section V-C). Here, MARS focuses on the string-type
relay network that allows for the easy deployment of extended
backhaul links between remote end-points. Applications for
such a network include home networks (e.g., extension of
access point’s range), outdoor events (football stadium) and
environmental (e.g., US border) monitoring. However, we will
also describe how MARS can support other topologies such
as a tree type in Section V-B.

Next, MARS includes a spatial probing algorithm by which
the node can efficiently find its optimal position that satisfies
the bandwidth demand on its link. Alternating between mea-
surements and movements, this probing algorithm guides the
robot to identify an ‘interesting’ space to probe. This space is
then explored at progressively finer resolutions until a locally
optimal position is found. Moreover, the algorithm enables a
set of MARS nodes to cooperatively form and adjust wireless
relay networks in case link conditions or QoS demands change.
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Note that MARS focuses on QoS demands of backhaul links,
excluding client-to-access node links. We assume that access
node (i.e., MARS) can aggregate QoS demands from multiple
clients that are associated with it and then use the aggregate
demands to form relay links.

MARS also includes a light-weight positioning system that
provides location information to the robot. This system is
currently implemented for indoor environments and does not
require any expensive infrastructure support, such as cameras
and other sensors, but uses natural landmarks, which are easily
obtainable with a semi-automated collection procedure, as
detailed in Section VI-C. Moreover, even though MARS is
designed for challenging indoor environments, such as office
buildings or large retailer shops, it is flexible enough to use
any type of positioning system, depending on deployment
scenarios (e.g., Global Positioning System (GPS) in outdoor
environments).

A prototype of MARS has been built with commodity
mobile robots and IEEE 802.11-based wireless routers, and its
algorithms have been implemented in Linux using a combina-
tion of kernel- and user-space functionalities. Our experimental
evaluation results on a prototype implementation of MARS
indicate that MARS achieves an average of 95% accuracy for
link-quality measurements, and finds locally optimal locations
with 300% less measurement overhead than exhaustive spatial
probing. Furthermore, our simulation results using ns-2 [12]
show that MARS reduces energy usage by up to 54% during
connectivity reformation.

In summary, this paper makes the following main contribu-
tion:

• We study the feasibility of using a mobile robot for
dynamic (re)formation of a string-type wireless relay net-
work, while reducing manual measurement and relocation
overheads.

• We design, develop, and implement MARS that
autonomously characterizes spatial link-quality and
uses/controls mobility to find (sub)optimal position of a
wireless router for QoS support.

• We show the effectiveness of MARS through extensive
performance evaluation using both system prototype and
simulation.

The rest of this paper is organized as follows. Section II
provides the motivation behind this work. Section III presents
the software architecture and a hardware prototype of MARS.
Sections IV–VI detail the core components of MARS. Section
VII presents the evaluation results of our MARS implementa-
tion. The paper concludes with Section VIII.

II. MOTIVATION

We first argue for the need of a mobile autonomous router
system (MARS) in wireless relay networks, and then discuss
why existing techniques are not suitable for MARS.

A. Why Mobile Autonomous Routers?

Due to open and continuously-changing deployment en-
vironments, wireless relay networks often incur high mea-
surement and (re)configuration costs [13]–[15]. After their

deployment, relay networks may often experience severe QoS
degradation, require additional measurements, and/or need
to adjust placement of the relay nodes, as their physical
environment changes. Even though various techniques (e.g.,
transmission-power control, rate adaptation) and technologies
(MIMO, multi-radios) have been proposed, their bandwidth
improvement is essentially limited by the surrounding envi-
ronment. For example, assuming that nodes already use their
maximum transmission power, a stationary node behind the
wall might not be able to improve the bandwidth of link to
another node on the opposite side of the wall using the existing
techniques.

In contrast, by utilizing their mobility, mobile wireless relay
routers can overcome the spatial dependency of link-quality.
Being aware of diverse link-quality at different locations,
mobile wireless routers can automatically improve network
performance and also offer several benefits in wireless relay
networks as follows.

• Extension of AP’s range: users near the boundary of an
AP’s coverage might experience intermittent connectivity.
A mobile wireless router can be placed near the limit of the
AP’s communication range and relay users’ traffic for the
extension of the AP’s range.

• Deployment of wireless relay networks: for rural areas or
outdoor events, multi-hop relay networks are an inexpensive
way to provide/extend connectivity, but their optimal place-
ment is still a challenging task. A group of mobile routers
can identify a proper position of each router, forming a relay
network [16].

• Adjustment of wireless routers’ placement: many nodes in
a relay network need to re-adjust their position to deal with
environmental changes (e.g., dynamic obstacles in urban
areas), but manually adjusting locations of each pair of
nodes incurs significant time and management costs [17].
Equipped with (albeit limited) local mobility, mobile routers
can cooperatively and automatically adjust their locations to
improve connectivity and link-quality.

• Improved resilience to DoS attacks: wireless networks
are vulnerable to denial-of-service (DoS) attacks such as
jamming, and channel hopping provides limited resilience
to wide-band jamming. However, because of the spatial
locality of such attacks, mobile wireless routers in a relay
network can improve resilience to such attacks by physically
moving away from the jamming source [11].

Motivated by the above and other likely scenarios, we
would like to (i) design an autonomous robot-based router
system that accurately captures the quality of wireless link
over space and that effectively optimizes a router’s position
based on the thus-obtained characteristics, and (ii) prototype
and evaluate such a mobile router, especially for string-type
relay networks. Specifically, as illustrated in Figure 1, we focus
on the placement of mobile wireless routers from an AP or
a gateway and the formation of multi-hop relay links among
the routers given links’ QoS requirements.
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Fig. 1. A group of mobile routers can cooperatively move and form
string-type wireless relay networks by being aware of spatially diverse link-
conditions over deployment areas.

B. Limitations of Existing Approaches

There has been a significant volume of work on link-quality
awareness and the use of mobility. We discuss pros and cons
of using existing approaches for the design of a mobile router.

Link-quality awareness: Mobile routers (relay nodes) must
be able to accurately measure wireless link-quality—In this
paper, we consider the packet-delivery ratio or bandwidth as
link-quality parameters of interest—over physical space. There
have been numerous link-quality measurement studies and
techniques in wireless mesh networks, large-scale WLANs,
and wireless sensor networks [18]–[22]. Their insights and
solutions, however, focus on stationary networks where the
physical space of measurements is fixed. The authors of [23]
considered the link-quality change resulting from location
changes in mobile ad-hoc networks (MANETs). However,
their solution only deals with a binary (ON/OFF) connectivity
model based on simple metrics such as SNR and distance, and
thus, is not suitable for capturing various channel conditions
in diverse deployment areas [9].

Node mobility: Mobile routers must be able to exploit their
mobility in conjunction with link-quality-awareness. Mobil-
ity in wireless networks has been considered from various
perspectives. First, flip-type mobility has been proposed for
sensor nodes to make a one-time random movement [24].
Second, use of sophisticated robots in hybrid sensor networks
has been proposed, and the tradeoff between node density
and node mobility has been studied [25]. Third, using mobile
sensors against radio jamming attacks has been considered,
and movement-decision metrics (i.e., SNR and the amount
of traffic) have been proposed [11]. Fourth, multipath-fading-
aware mobility control strategies to improve link throughput
has been proposed in [26]. Finally, in MANETs, users’ mo-
bility is exploited for mobile devices to improve their end-to-
end throughput [27], [28]. However, the mobility used in these
existing approaches is not closely coupled with link-quality-
awareness or based on a theoretic channel model, reducing
the chance of making optimal movements in heterogeneous
network deployment environments.

Position-awareness: Mobile routers with limited battery and
CPU power must be equipped with a light-weight positioning
system that does not require any extensive computation or
expensive infrastructure support. On the one hand, positioning

in an open sky outdoor environment is relatively easy and
fast since GPS provides accurate position information. On the
other hand, positioning in an indoor environment or an outdoor
urban canyon is challenging, and many solutions have been
proposed. In the area of robotics, the use of different hardware
(sonar, laser, compass, and video camera) has been explored
[29], [30], and various assumptions (e.g., known or unknown
landmarks) and algorithms (training or search) have also been
investigated [31]. However, their hardware and computation
costs have to be carefully considered, depending on the under-
lying applications. In the field of wireless networks, using AP-
based landmarks [32], ceiling-mounted sensors and listeners
[33], and video cameras [34] have been proposed, but these
approaches need installation of a positioning infrastructure or
cooperation from the network infrastructure (e.g., APs).

III. MARS ARCHITECTURE

We now present the architecture of MARS. We first describe
its design rationale and software architecture. Then, we present
our current hardware prototype of MARS that is used for link-
quality measurement and system evaluation.

A. Design Rationale

MARS is a distributed system in which each MARS node
autonomously adjusts its position to meet the network (e.g.,
bandwidth and network coverage) requirements via the fol-
lowing distinct features.

• String-type relay networks: MARS supports the dynamic
(re)formation of a string-topology wireless relay network.
Using commodity robots and IEEE 802.11 wireless cards,
MARS aims to extend wireless network coverage where
each relay link satisfies given network requirements, as
illustrated in Figure 1.

• Patch-based spatial measurement: To characterize link-
quality over a wide area, MARS divides space into fixed-
size squares (or patches) and measures the link-quality
in the selected patches. This divide-and-conquer approach
enables MARS to locate subspaces or subareas where the
link quality meets the QoS requirements within the entire
deployment area.

• Hierarchical spatial probing: MARS takes a hierarchical
approach to finding locally optimal positions. Unlike ex-
haustive spatial probing, MARS incrementally probes space
as needed. By repeating the cycle of spatial measurement
and local spatial-probing decision, MARS reduces the prob-
ing overhead.

• Infrastructure-less hybrid positioning: MARS includes a
positioning system for the case where no external posi-
tioning system is available. By exploiting the benefits of
both dead-reckoning and physical-landmark-based position-
ing, MARS achieves positioning accuracy at a reasonable
training cost.

Throughout this paper, we assume that a robot has only
basic driving capabilities (forward/backward/spin), which are
adequate for evaluating the proposed design of mobile routers.
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Fig. 2. MARS Software architecture. MARS is designed across the applica-
tion, network, and link layers in a router, and controls sensors for measuring
distance and a robot for movement.

Further, we consider link bandwidth (or packet delivery ratio
(PDR)) as the QoS parameter, and the two terms are used
interchangeably.

B. Software Architecture and Operations

Following the above rationale, the software architecture
of MARS is designed as shown in Figure 2, and operates
as follows. Initially, a MARS node receives the bandwidth
requirement of link to AP or a neighboring node and then
checks if the node’s current position meets the requirement,
labeled as Satisfiability Check in the figure. If the current
position does not meet the requirement, MARS then decides
which direction it has to move-and-measure (Spatial Probing)
based on previous link-quality information (Quality). Next,
if further measurements are necessary, MARS moves to a
different location (Movement) and measures the link-quality at
the new location (Measurement). Based on the measured link-
quality, MARS again checks the bandwidth satisfiability. This
procedure is repeated until MARS finds the position that satis-
fies the bandwidth requirements. Finally, for each movement,
MARS maintains the node’s position information (Position)
using the distance information periodically measured by sonar
sensors (Distance).

Next, we will detail the three core components of MARS:
spatial measurement protocol in Section IV, spatial probing
algorithm in Section V, and positioning system in Section VI.

C. Hardware Prototype

Before detailing the algorithms of MARS, we describe its
hardware prototype built for our measurement and evaluation
of MARS. Figure 3 depicts the hardware prototype of MARS,
which consists of a mobile robot, a multi-radio wireless router,
and sonar sensors: (i) MARS uses iRobot Create [35] for
mobility, which provides a well-defined API for movement
control (e.g., a granularity of 1cm movement) and is pow-
erful enough to carry a network node as in [34], [36]; (ii)
MARS is equipped with an RB230 wireless router (233Mhz
CPU, 128MB memory) [37], and the router is equipped with
two IEEE 802.11 miniPCI NICs, each with a 5 dBi omni-
directional antenna. In addition, this router includes a serial
port for communication with the robot and sonar sensors,
and is connected to an external battery for a long lifetime;

Fig. 3. MARS hardware prototype. A MARS node is prototyped with an
iRobot, a wireless router, and sonar sensors.

(iii) MARS is equipped with a sonar sensor on each side of
the robot to measure the distance between the robot and the
surrounding obstacles. The sonar sensor is cheap (about $25
apiece) and provides accurate distance information (error of
less than 2.5cm) to objects placed at up to 6m in line of sight
for the positioning system.

IV. MEASUREMENT PROTOCOL

We first overview challenges in designing a link-quality
measurement protocol, and then propose a measurement pro-
tocol that characterizes spatial link-quality through point and
spatial measurement techniques.

A. Overview

Key challenges in measurements are (C1) how to measure
the link bandwidth at a given position/time and (C2) how to
characterize the quality of links as a function of physical space.
First, to determine if the current position’s link satisfies the
bandwidth demand, the measurement protocol has to be able
to accurately estimate the link bandwidth at each position.
Moreover, the protocol has to capture the link bandwidth as
quickly as possible, to reduce probing time, or equivalently
node’s energy consumption.

Next, MARS must be able to derive the overall quality
of links in a certain space, mainly for intelligent selection
of a subspace for measurement within a large deployment
area. Even though wireless link-quality may vary with the
node’s location [38], MARS needs to be able to characterize
and differentiate spaces with respect to the quality of links.
In addition, this characterization must be accurate even in
the presence of adverse environmental factors, such as mov-
ing obstacles or short-term interference during measurement
period, which may cause temporal variations in link-quality
measurement.

The measurement protocol in MARS uses both point and
spatial measurement techniques to overcome the challenges
mentioned above. In what follows, we will detail both tech-
niques with which MARS derives spatial link-quality together
with measurement results. Note that in this section, we use
controlled configurations (e.g., low transmission power, small
measurement size) for experiments, due to indoor space
constraints. Although the absolute numbers of results might
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be different under different settings, their trends support the
underlying rationale of the proposed techniques. We will also
present evaluation results under real-life settings in Section
VII.

B. Point Measurement Technique

To meet the accuracy and time constraints, MARS in-
cludes a unicast-based active probing technique along with
a cross-layer design principle. There have been numerous
techniques for estimating wireless link bandwidth. First, the
SNR-based approach has been studied extensively for the PHY
layer based on information theory [38], but the correlation
between SNR-based bandwidth estimation and packet-level
bandwidth estimation is shown to be weak [9], [39]. Second,
the broadcast-based packet-delivery ratio (PDR) measurement
has been widely used in multi-hop routing metrics, such as
ETX (Expected Transmission Count [40]) and ETT (Expected
Transmission Time [41]). However, due to different underlying
communication settings (e.g., modulation schemes) of the
broadcast from those of actual data transmission, the technique
has limited measurement accuracy, even if the broadcast is
modified to use various modulation schemes [42], [43]. Next,
the packet-pair technique used in [41] is bandwidth-efficient,
but sensitive to the short-term fading effect due to its use
of a small number of probing packets. By contrast, the
measurement technique in MARS uses a set of unicast probing
packets to mimic actual data transmissions for accuracy, and
evenly spaces the packets throughout a given measurement
period (e.g., 1 packet every 50ms for a x second-period) to
minimize the undesirable effect of channel fading (e.g., bursty
bit-errors). Here, the measurement period can be given as
a system parameter, and this parameter can be determined,
depending on site-specific radio environment as well as system
tolerance to temporal measurement overhead.

Furthermore, as shown in Figure 2, the measurement tech-
nique in MARS is designed and implemented across the net-
work and link layers to further improve measurement accuracy.
After receiving a point measurement request from the spatial
probing algorithm, the measurement protocol at the network
layer sends a set of unicast probing packets to a neighboring
node. At the same time, the protocol at the device driver
passively monitors their transmission results based on MAC’s
feedback. The use of this feedback at the sender side allows
for capturing the total number of (re-)transmissions made by
MAC for delivering the probing packets, yielding an accurate
PDR of the link. Next, to capture link asymmetry, MARS
requests the neighboring node to execute the same probing
procedure in the opposite direction, and then the node sends
the measurement result back to the MARS node. Finally, the
PDRs of both directions are stored in the Quality database at
the MARS node, and the protocol notifies the completion of
the point measurement to the spatial probing algorithm.

Our measurement evaluation of the above protocol shows
that the active probing technique in MARS achieves higher
than 95% accuracy in estimating link bandwidth. Figure 4
shows the progressions of actual UDP throughput (upper fig-
ure) and PDRs measured via the point measurement technique
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Fig. 4. Point measurement accuracy. Link-quality (PDR) measured by MARS
(bottom figure) is accurate enough to capture the actual bandwidth (top figure)
of a link over a line of 7m from a remote AP.

(lower figure) of a link between MARS and an AP over
a straight line of 7m. As shown in the figures, MARS’s
measurement is indeed close to the actual link bandwidth at
the cost of 20 probing packets for a 2s-period at each position.
We use the measured PDR (i.e., Estimated LQ in Figure 4 to
derive link bandwidth using an PDR-to-link capacity equation
in [44]. Here, we use ‘link bandwidth’ to refer to link capacity.
Then, we calculate root-mean-square-error (rmse) between
the estimated link bandwidth and achieved UDP throughput.
Finally, we derive the accuracy of the measured LQ, based on
the average of normalized rmse. Here, this accuracy is derived
from each run of the experiment settings as it affects to the
accuracy of spatial link-quality estimate. For each run out of
the multiple runs, the point measurement technique achieves
more than 95% accuracy.

Next, from the point measurements, MARS can also identify
a network boundary (gray bar in the lower figure) that may
marginally satisfy the link bandwidth. Note that while MARS
is capable of measuring PDRs over different data-transmission
rates, it uses a fixed-data rate to evaluate the accuracy and ap-
plicability of the monitoring technique for spatial measurement
protocol, which will be described next.

C. Spatial Measurement Protocol

Next, to characterize link-quality as a function of space,
MARS essentially uses a divide-and-conquer approach built
upon spatial locality in link-quality. There have been numerous
techniques proposed to model spectrum propagation over
space. First, empirical models such as log-distance path loss
model [38] determine the propagation based on mathematical
models and empirical off-line measurements in other similar
environments. However, the temporal and spatial granularities
of such measurements are too coarse (e.g., retail stores during
daytime) to predict the propagation in a heterogeneous deploy-
ment environment. Next, ray-tracing-based models can predict
the propagation of a signal by tracing rays from a transmitter
at uniform angular intervals in all directions [45]. However,
this model requires the detailed geometric structure of walls,
ceilings, and floors along with information about construction
materials. Third, neural-network-based models such as a mul-
tiplayer perceptron algorithms have been proposed for cellular
networks [46], but they need an extensive training set of terrain
information and exhaustive SNR measurements.
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By contrast, MARS relies purely on on-line link-quality
measurements over unit space without requiring information
about physical environments. Specifically, MARS first divides
space into grids or patches of fixed size (e.g., 50cm × 50cm
in an indoor environment). Note that this size changes dynam-
ically, depending on space to probe (an outdoor or cooridor
environment) and link parameters (transmission power); we
use 50cm × 50cm patches and 5 dBm transmission power
for our controlled measurements. Next, MARS measures the
quality of link between a node and its fixed neighboring
node, while changing its location within the patch. These
measurements are then averaged to derive spatial link-quality
as follows:

SPDRi =
1

n

n∑

j=1

PDRj , PDRj =
1

m

m∑

l=1

rl (1)

where SPDRi is the spatial link-quality of patch i, PDRj is
an average PDR of m point measurements at vertex j, and r

is the PDR of one point measurement at a given orientation
angle. The intuition behind this definition is to exploit spatial
locality among the quality of links within a small space [22].
By using a small number of sample measurements within the
space, SPDR can represent an average bandwidth of links in
the space. Furthermore, as we will describe in Section V,
the patch-based definition allows the spatial probing algorithm
to selectively and incrementally probe an area of interest, as
opposed to probing the entire area. Note that the selection of
the patch-size is an interesting issue, which has been explored
in [47].

Finally, to reduce temporal and spatial variations in link-
quality measurements, MARS not only takes multiple mea-
surements per patch, but also introduces randomization. As
shown in Figure 5(a), a MARS node conducts point mea-
surement at each vertex m times. In addition, for each point
measurement, the node randomly changes its direction so that
measurements can reflect as diverse links as possible. Here,
m is dynamically adjusted, depending on the variance of
point measurements (m=3 by default). MARS also adjusts the
number of vertices (n=4 by default) within each patch, if the
link-quality variance among the vertices is larger than a given
threshold. For example, if the variance of PDR is greater than
0.2, MARS linearly increases m and n for the patch. Figure
5(b) shows SPDR measurements in the topology of Figure
5(a). As shown in the figure, SPDR normalizes the quality
of links for each patch given a variance constraint (0.1 in
PDR), and effectively differentiates spaces with respect to link
quality.

V. SPATIAL PROBING ALGORITHM

With the measurement protocol, we present a spatial probing
algorithm that guides MARS nodes to find locally optimal
positions to dynamically (re-)form a string-type relay network.

A. Overview

With a group of nodes, the objective of the spatial probing
algorithm in MARS is to cooperatively form a relay network
by efficiently finding a locally optimal node position. In other

(a) Spatial LQ measurement protocol
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(b) Spatial LQ measurement

Fig. 5. Spatial link-quality measurement. (a) MARS measures point link-
quality at each vertex of a patch. (b) The point measurement results are then
used for deriving SPDR of the patch.

words, the algorithm has to minimize measurement space
(equivalent to energy or convergence time) and must identify
position that satisfies network QoS requirement. However,
main challenges are (i) how to coordinate a group of MARS
nodes to efficiently form a relay network and (ii) how to find
an ‘interesting’ space for each MARS node to probe. First,
coordinating a group of relay nodes is challenging because
the link-quality between neighboring nodes depends heavily
on each other’s position. Furthermore, this coordination is not
an one-time operation, but a recurring operation due to changes
in the physical environment or bandwidth demand.

Next, during the formation of a relay network, each MARS
node has to efficiently find an optimal position at the least
measurement cost. Finding an optimal node position in a relay
network is essentially equivalent to maximizing the physical
distance between adjacent relay nodes, while satisfying the
bandwidth demands of their links. On one hand, exhaustive
measurements over a target area might be able to provide
globally optimal location information, but it might require
significant amounts of energy and time. On the other hand,
finding a locally optimal position may cause a local maximum,
which may result in either poor link-bandwidth or reduced
network coverage.

B. Iterative Network (Re-)Formation

For deployment and adjustment of a relay network, the
spatial probing algorithm uses an iterative approach for both
energy-efficiency and reduction of the coordination overhead.
Let us consider the following deployment scenario. Starting
from a gateway, Sam, a network administrator, periodically
drops a MARS node (MARS1, · · · ,MARSn) along corridors
like a trail of breadcrumbs [3], in a way that neighboring
MARS nodes can hear heartbeats of each other. After de-
ploying n nodes in a chain, Sam requests the deployed nodes
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(e.g., MARSi) to cooperatively optimize their position for
meeting the bandwidth (bw) requirement of link to a previous
node (MARSi−1) or the gateway. One way of coordinating
the optimization would be the use of a centralized approach
in which each node sends its measurement results to the
gateway, and the gateway can calculate the best position of
each node. However, this approach requires each node to con-
duct extensive link-quality measurements over the entire local
space. Furthermore, since the bandwidth of one link depends
on both end-nodes’ locations, the number of measurements
that each node conducts increases quadratically. For example,
assuming that there are m patches that each node needs to
explore, the node has to measure the m patches for each patch
of the previous node—O(m2). Next, a distributed approach
would help avoid the need for exhaustive measurements and
allow adjacent nodes in the chain to locally identify optimal
positions. However, due to the nature of the chain topology in
a relay network, even if nodes of one intermediate link locally
optimizes their position, the nodes might need to re-adjust their
positions after their “parent” or upstream nodes close to the
gateway optimize their positions.

By considering such measurement overhead and depen-
dency, the spatial probing algorithm in MARS optimizes
its location only after the previous node finds its locally
optimal position, based on the iterative approach. As explained
in Algorithm 1 (1), the first node (MARS1) optimizes its
position with a gateway, and then the child nodes optimize
their positions in order. Here, we assume that during the
optimization, each node can maintain link connectivity with
neighboring nodes, because the heartbeat is transmitted using
low-rate, and thus reliable, broadcasts. Because a parent node’s
location of a link is fixed, a child node needs to measure
only m patches over the parent node, which can be further
reduced by incorporating a hierarchical approach (see the next
section). In addition, the iterative approach facilitates other
complex topologies, such as tree or DAG with a linear increase
of complexity. For example, once a string relay network is
formed, each intermediate node in the network can create
another relay network starting from itself, and apply the same
iterative procedure to build a tree topology.

In addition to the formation of a relay network, MARS also
takes the iterative approach to handle link-quality fluctuations
in intermediate links. Each MARS node periodically monitors
the quality of link to the next (or child) node, and if that link’s
quality is below the bandwidth requirement, then the child
node should start the adjustment procedure. Subsequently, the
child nodes in the remainder of the relay network optimize
their position iteratively. We show the effectiveness of this
optimization approach in Section VII-B2. Note that this iter-
ative adjustment can be extended for an intermediate node to
move and optimize links to both its parent and child nodes in
order to avoid the propagation of adjustment requests. This is
an interesting, but challenging problem, which is a matter of
future inquiry.

C. Hierarchical Position Optimization using Correlation

For each link, a child MARS node optimizes its position by
finding a patch whose SPDR meets the bandwidth demand,

Algorithm 1 Spatial probing in MARS

(1) Main function for formation in MARSi (bw, nextloc)
1: /* bw: bandwidth demand of link with MARSi−1 */
2: /* nextloc: location of the next node, MARSi+1 */
3: wait until node receives done message from MARSi−1;
4: optimize node location by calling the function (2);
5: send done message to MARSi+1;

(2) Coarse-grained spatial probing (bw, nextloc)
6: face toward nextloc;
7: for i=0; i < Ng; i++ do /* Ng is the number of grids */
8: move-and-measure corner patches of grid i;
9: if SPDR of the patches is greater than bw then

10: gid← i;
11: end if
12: end for
13: move to the grid gid and call the function (3)

(3) Fine-grained spatial probing (gid, bw)
14: po← current position;
15: while SPDR(po) satisfies bw do
16: move-and-measure neighboring patches of the patch po;
17: pm← the patch with the maximum SPDR among neighbors
18: if SPDR(pm) > bw then
19: po← location of the patch pm;
20: end if
21: end while

and further among measured candidate patches, the node
chooses the farthest one from its parent node to maximize
coverage of networks. In fact, there may exist multiple optimal
positions that meet the bandwidth demand, and a greedy
measurement/movement strategy could lead the node to reach
one of the farthest positions. However, relying on a point
measurement is often erroneous due to spatially diverse link-
quality. Moreover, even after its initial deployment, the robot
may need to frequently (re)adjust its position to cope with
temporal variations in link-quality. Instead, by using SPDR,
MARS positions itself in a patch where the majority of
positions meet the demand with a certain variance bound.

A main challenge now is how to “efficiently” find such
a patch, as opposed to relying on exhaustive search over
the entire deployment area. To overcome this challenge, the
spatial probing algorithm in MARS exploits characteristics
in spatial link-quality measurements. If the measurements
can capture correlations of spatial link-quality with stationary
factors such as distance, obstacles, or interference source, then
the probing algorithm can adaptively adjust the granularity of
measurements.

To confirm this characteristic, we have conducted two
interesting measurement studies as follows. First, we study the
correlation of SPDRs with distance. We use an empty room
(600cm × 60cm space) in our lab and an idle IEEE 802.11a
frequency to exclude the other effects such as interference,
obstacles and moving objects. In addition, we use a reduced
transmission power of 5dBm to identify the correlation given
the limited room space. Note that the results from these
controlled settings are also consistent with those in real-life
settings, as we will show in Section VII-B1. Next, we place
one stationary node and one mobile robot at one corner and
measure the spatial link-quality while letting the robot move
away from the stationary node. Here, we use an exhaustive
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Fig. 6. Spatial correlation with distance. Spatial link-quality is correlated
with distance between the two end-nodes of a link. MARS can identify the
boundary (dotted line) that satisfies bandwidth demand (SPDR = 0.7).

spatial probing algorithm, which measures SPDR of every
patch in the area. As shown in Figure 6, the correlation
between spatial link-quality and distance is captured. Further-
more, this correlation helps MARS find locations that satisfy
the bandwidth demand (dotted line). Second, we study the
correlation of SPDRs with physical obstacles as well as the
source of signal. We first place an obstacle, a stationary node,
and a mobile node as shown in Figure 7(a). While moving
toward the end-position, the mobile robot measures and col-
lects SPDR of each patch. Figure 7(b) also confirms that the
measurements reflect the strong correlation. These confirmed
correlations suggest that the robot may take coarse-grained
measurements until the robot reaches areas whose SPDRs are
close to meeting the bandwidth requirements (correlation with
distance). On the other hand, in such interesting areas, the
robot may need to take fine-grained measurements to optimize
its position because of the irregular link-quality distribution
resulting from obstacles (correlation with obstacle).

Based on the above observations, our spatial probing algo-
rithm takes a hierarchical approach. As explained in Section
IV-C, existing spectrum propagation models either suffer from
unmatched physical parameters or require comprehensive in-
formation about physical environments to predict optimal node
positions. Exhaustive spatial probing requires excessive time
and system resources–an area of 5m×5m with a 50cm×50cm
unit requires 100 measurements. Instead, MARS takes a two-
step hierarchical procedure as explained in Algorithm 1 (2) and
(3). In the first step, it divides the probing space using a grid
large enough to identify the correlation with distance. Note that
the grid size is determined based on the wireless technology
used and the environment. We will show one measurement-
based grid size for indoors 802.11a in Section VII-B1. Then,
MARS measures a subset of patches inside each grid (coarse-
grained measurement). Among them, it identifies patches
beyond which spatial link-quality does not meet the bandwidth
requirements. In the second step, within the grid including the
identified patches, MARS uses fine-grained measurements to
find a locally optimal location.

Let us consider an example of optimizing one link from
an AP. As shown in Figure 8, a MARS node in grid 1
needs to find a location far away from the AP in grid 2.
MARS first measures the spatial link-quality of a corner
patch (50cm×50cm) in each grid (5m×5m), and then iden-
tifies grid 6 as the farthest grid that contains a bandwidth-
satisfying patch, shown with a cross in the figure. Next,
within the identified grid, MARS uses Newton’s method,

Fig. 8. Two-step spatial probing procedure of MARS: MARS first finds the
best among 8 grids. Then, within the grid, it identifies a locally optimal patch.

which recursively selects the best neighboring patch until the
node reaches a locally optimal position. Note that MARS uses
Newton’s method for its simplicity, but other optimization
methods such as second moments or extrapolation can also be
used for fine-grained measurements/movements. Nevertheless,
using the hierarchical approach, MARS significantly reduces
the probing space, as shown in the example. Our evaluation
results in Section VII-B1 also confirm the benefits of the two-
step procedure against the exhaustive spatial probing.

VI. POSITIONING SYSTEM

We present the final component of MARS, a positioning
system, that provides the location information of a node.

A. Overview

The function of a positioning system is to continuously
maintain the accurate location information of a node for both
derivation of spatial link-quality and relocation to previous
measurement areas. Although it is flexible enough to adopt
any positioning system, MARS uses an infrastructure-less
hybrid positioning system, especially for indoor environments.
The system is designed for using dead-reckoning (DR) com-
bined with landmark-based positioning. Although the system
deliberately adopts well-known positioning techniques from
the robotics, the main purpose of this section is to share
our experience in building an inexpensive positioning system
tailored for a mobile router, while completing the design and
evaluation of MARS.

B. Hybrid Positioning Algorithms

The positioning system in MARS consists of (i) contin-
uous location tracking or dead-reckoning and (ii) periodic
landmark-based position measurement. First, DR positioning
has been widely used in many navigation systems due mainly
to its simplicity. Adopting DR, the positioning system in
MARS simply maintains the location information of a robot
by constantly updating the robot’s position. Using the robot’s
previous position (x) and previous movement information (δ),
the system can easily estimate the robot’s current position
(x+ δ).

However, this technique accumulates errors, due to unex-
pected obstacles, floor conditions, or physical inertia, which
are difficult to avoid. For example, assume that MARS requests
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(b) Effect of an obstacle

Fig. 7. Spatial correlation with an obstacle. Figure 7(b) plots MARS’s measurement result of SPDR in our office (Figure 7(a)). SPDR shows diverse spatial
link-quality and correlates with the stationary node and the obstacle. The dotted line also shows MARS’s identification of an interesting network boundary
that satisfies the bandwidth requirements.
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(a) Sonar scan example
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(b) Landmark collection
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(c) Landmark detection

Fig. 9. Landmark-based positioning: (a) A sonar scanning primitive identifies landmarks around the robot’s position. (b) MARS discovers landmarks using
a semi-automated procedure, which is based on DR and manual measurements of a few positions. (c) MARS determines landmarks that are visible from at
least three different locations.

a 90o rotation followed by a movement of 2m but the robot
physically rotates 93o instead, while still believing it has
rotated 90o. After a forward movement of 2m its physical
position is 10cm away from its believed-to-be position. These
small errors accumulate over time and may render the robot
unable to follow its planned trajectory. While use of a compass
would greatly improve the performance of DR which is more
sensitive to angular errors, we found that stray magnetic
fields (HVAC, power cables, metallic structures) render all
compasses unusable indoor.

One method to avoid accumulation of positioning errors is
to periodically measure the robot’s true position and update
the DR-based position. Numerous position measurement tech-
niques have been proposed, but many require infrastructure
support such as sensors and access points [32], [34] or incur
extensive computation overhead for processing image/training
data [29], [30]. Instead, MARS exploits naturally occurring
landmarks in the environment. Briefly, given positions (xi, yi)
of at least three landmarks and distances di to each landmark
from the current position, one can derive the current position
(x, y) by solving the following equation:

(x− xi)
2 + (y − yi)

2 = d
2
i . (2)

However, the main challenges in using this technique are
how to identify the landmarks (xi, yi) and how to accurately
derive the position in the presence of measurement uncertain-
ties of di. First, to sense landmarks near the robot, MARS uses
sonar scanning. Spinning around 360o, the robot collects the

information of distances to its surrounding obstacles. Figure
9(a) shows one scan result from the robot located at (0, 0).
Because the sonar has a 45o wide beam shape, the resulting
polar plot has regions of constant depth (RCDs) only for some
of the objects in the environment.

Next, using the above scanning, the positioning system
needs to derive the robot’s current position. However, as
shown in Figure 9(a), the scan result includes many candidate
landmarks (measured as arcs a0, . . . , a9), and the robot has
to determine which arcs indeed represent landmarks and
how these arcs are associated with known landmarks.We
assume the position information of landmarks has already been
collected, and the next section will discuss how to collect
the position information. To solve this association problem,
MARS uses a matching algorithm similar to the one in [48].
Briefly, given a set of arcs and known landmarks that are likely
to be visible from the robot’s current believed-to-be position,
MARS first generates a set of feasible matchings between
arcs and landmarks. Then, each feasible matching is evaluated
and considered only if from the estimated robot’s position,
landmarks are actually sensed at measured distances in the
scanning results. Finally, if there are multiple valid matchings,
then MARS chooses the matching that minimizes the residual
error, defined as follows:

1

n

n∑

i=1

|(x− xi)
2 + (y − yi)

2 − d
2
i | (3)

where n is the number of landmarks, (x, y) the estimated
position of a robot, (xi, yi) the position of a landmark i, and
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di distance between (x, y) and (xi, yi).

C. Landmark Collection Procedure

To build the landmark information, the positioning system
includes a semi-automated landmark collection procedure.
This procedure consists of DR-based collection of RCDs over
deployment areas, followed by offline processing that extracts
landmarks from a large set of collected RCDs. Initially, a robot
navigates deployment areas (corridors), and periodically stops
and measures RCDs via scanning. These RCDs and the robot’s
scanning position information are then used to calculate the
positions of potential landmarks. However, for this calculation,
accurate information on scanning points is essential, and the
robot obtains it in the following semi-automated way. The
robot records the scanning positions using DR during the
navigation, and a few positions are manually measured. Then,
the manual position measurements and the DR-based positions
are fed into a trajectory fitting optimization technique for
generating true scanning points. Using a few “good” points
that are manually measured, the entire trajectory of the robot
can be fitted so that the trajectory satisfies two goals: (i) the
trajectory passes through good points and (ii) the trajectory
is close to the length/angle of each leg from the odometry
as much as possible. This trajectory fit is obtained using the
following optimization:

min [

n∑

i=1

derr(i, i+ 1) +K

n−1∑

i=2

aerr(i− 1, i, i+ 1)] (4)

where derr(i, i + 1) is the absolute difference between the
length of leg i obtained from the odometry and the length
imposed by the fit; aerr(i − 1, i, i + 1) is the absolute error
in angle at measurement stop i, namely, the angle between
segments (i−1, i) and (i, i+1); K is a constant that modifies
the relative weight of preserving angles versus preserving dis-
tances from the original drive. The procedure is implemented
using the function fmins in octave-forge. Finally, based on
the true scanning points and collected RCDs, the positioning
system can obtain accurate positions of candidate landmarks.

Figure 9(b) depicts the result of the landmark-collection
procedure on the corridor of an office building. The robot
starts at the circle marked “start”, drives in a counter-clockwise
loop, and periodically stops and takes a sonar scan to collect
RCDs. At the same time, the robot’s DR-based positions are
recorded (denoted by crosses). As expected, DR-based position
becomes erroneous toward the end of the drive, where the
robot is 60cm away from its DR-based position. On the other
hand, using a few manual position measurements (denoted
by circles), the robot’s actual trajectory (the solid line) and
scanning positions (omitted) are also collected.

Next, based on the information of RCDs and scanning
points, the positioning system identifies “good” landmarks that
have robust visibility. Good landmarks should be visible from
different places, and we found that corners, door frames, or
even cracks in the walls are good landmarks mainly because
they are fixed and reflective to sonars. MARS only includes
landmarks that are visible from at least three scanning points.

Figure 9(c) shows the detection from the scanning results at
three different positions denoted as 1, 2, 3. Good landmarks
like the top two dots are heavily intersected (high visibility).
On the other hand, the candidate landmark at the lowest spot
is not “good”, since the intersection is weak–it is in fact a
flat wall. Using this technique and RCD collections, MARS
effectively collects landmarks as shown in Figure 9(b) that
are used later for positioning during the spatial probing. Note
that a “good” landmark refers to its presence in measurements
from different vantage points, and not its guaranteed presence
in time. Clearly, furniture that is later moved would provide
unreliable landmarks, which either need to be detected as
such, or eliminated by a new collection procedure. The first
approach is intensely explored by the robotics community
[49], as it provides methods to simultaneously use and update
the map. These highly complex methods, based on extended
Kalman filters, or on particle filters are able to probabilistically
recognize new landmarks to be added to the map, or delete
old landmarks which disappeared, all based on the the current
known position and the stable landmarks. In this project
however, we opted for the latter approach—a lower complexity
method that involves the semi-automated landmark collection
procedure. This has to be repeated by the robot as needed
whenever the set of the landmarks changes.

VII. PERFORMANCE EVALUATION

We now present the evaluation results of MARS. We first
describe an experimental setup, and then present key exper-
imental evaluation results in indoor environments. Next, we
show ns-2-based simulation study on energy saving.

A. Experimental Setup

We extensively evaluated MARS in a challenging indoor
environment consisting mainly of office rooms and corridors
(Figure 10). This environment includes floor-to-ceiling con-
crete walls and wooden doors, thus providing natural multi-
path fading effects on the radio signal. In addition, IEEE
802.11a is used for wireless links since this standard provides
high data-rates and many idle channels. Throughout the entire
experimentation a fixed data-rate is used to exclude the effects
of rate-adaptation algorithms in NICs and to focus on the effect
of node mobility. Each radio is tuned to a medium transmission
power of 10 dBm to allow multi-hop relays in a limited
space. Finally, we prototype and use three MARS nodes
for our experimentation, which are sufficient to demonstrate
MARS’ potential benefits for wireless relay networks. By

Fig. 10. Topology for corridor experimentation. We evaluate the spatial
probing algorithm of MARS in our Department Building.
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Fig. 11. Spatial link-quality measurement on a corridor. Spatial link-quality in a real-life environment also shows correlation with distance and many
obstacles. Areas with blue shades and white dot lines are interesting places for MARS to be positioned.
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Fig. 12. Accuracy of spatial probing. The spatial probing finds locally optimal positions with 86% accuracy for given QoS requests, while reducing the
measurement overhead by two-thirds, compared to exhaustive probing.

performing the same experiment recursively, one can realize
experimentation on an arbitrary number of hops.

B. Experimental Results

1) Reducing Space to Probe: We first studied the effective-
ness of the spatial probing algorithm of MARS in reducing
space to probe. We place node 1 in one corridor shown in
Figure 10 and let node 2 find the position farthest away
from node 1 given QoS constraints. We first collect spatial
link-quality using exhaustive probing–visit every patch and
measure SPDR–over 15m × 1.2m on the corridor. Then, we
run the spatial probing algorithm explained in Section V-C, 20
times with the same settings. We measure the final position of
node 2, the number of point measurements, and the number
of patches visited.

Figure 11 shows the spatial link-quality measurements on
the corridor using the exhaustive probing. We measure the
link-quality on every patch of size 50cm × 30cm. Note
that we ran the same experiment more than 5 times over 2
days and saw similar results. As shown in the figure, the
spatial link-quality shows correlation with several obstacles
(doors, walls, etc.) along the corridor as well as with distance
to the stationary node. In addition, this link-quality shows
several interesting boundaries denoted by white lines, or areas
(e.g., the one labeled with SPDR=0.85) that satisfy link’s
QoS demand. However, even though this exhaustive probing
provides a comprehensive SPDR map, it is very expensive in
terms of energy and time to build. For example, the above
spatial probing for constructing the entire map requires more
than 450 point measurements.

The spatial probing algorithm in MARS reduces this over-
head while maintaining reasonable accuracy in finding a
locally optimal position. Figure 12 shows the distribution of
MARS’s final positions from 20 runs for each QoS demand
(SPDR=0.85 or 0.45). Starting from (0, 0), the robot is guided
by the spatial probing algorithm to find the farthest position
that satisfies the given SPDR. As shown in the figure, MARS’s
probing algorithm effectively determines a locally optimal

position; 86% of the final locations are located within the
area of required SPDR boundary, whereas the remaining 14%
deviates from the boundary by, on average, 54 cm. Some of
runs yielded local maxima–still satisfying the required QoS,
but without reaching the farthest position. MARS could avoid
this local maximum by using other optimization techniques,
such as extrapolation, in fine-grained measurements, and we
will explore these in future. On the other hand, thanks
to its hierarchical approach, MARS reduces the number of
measurements, on average, by two-thirds over the exhaustive
probing, as shown in Table I. For example, MARS0.45 reduces
the total number of measurements (Nm) from 465 to 150.
Moreover, an interesting feature is that the increase in number
of measurements from MARS0.85 to MARS0.45 is only 19%,
although the navigation space of the former is twice larger
than that of the latter, indicating the scalability of the spatial
probing algorithm.

Throughout our experimentation, the spatial probing algo-
rithm is set to use the 2.0m × 0.6m size of a grid. This
value is determined based on our off-line measurement study,
which helps identify the degree of link-quality attenuation
in corridor or indoor environments. As increasing the grid
size by 1m, we measure the difference between two SPDRs
in both ends of the grid, and repeat this measurement until
the difference becomes greater than the minimum threshold
(10%). Under current experiment settings, the use of a 2.0m
× 0.6m grid provides 10–100% more efficiency than the use
of other’s. This efficiency results from the trade-off in the two-
step procedure of spatial probing. For example, the larger the
size of grid, the faster the algorithm can find a boundary of
interest. However, it is likely that the algorithm needs more
fine-grained measurements within a large-size grid.

2) Optimizing Multi-Hop Links: We also studied the effec-
tiveness of optimizing multi-hop wireless links in the presence
of changes in link conditions. As discussed in Section V-B,
to adapt to changing link conditions or QoS requirements,
MARS iteratively and cooperatively adjusts its position to
maintain the required QoS. To evaluate the performance of this

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12

TABLE I
EFFICIENCY BENEFIT OF THE SPATIAL PROBING IN MARS. MARS
REDUCES THE MEASUREMENT EFFORT BY TWO-THIRDS OVER THE

EXHAUSTIVE SPATIAL PROBING, WHILE FINDING A LOCALLY OPTIMAL

POSITION. THE NUMBER IN A PARENTHESIS IS VARIANCE.

Exhaustive MARS0.45 MARS0.85 Benefits§

Nm
∗ 465 (0) 150 (32) 126 (43) 67.3%

Np
¶ 120 (0) 24 (6) 18 (5) 80.0%

§ Overhead reduction of MARS0.45 over exhaustive probing.
∗ Total number of measurements.
¶ Total number of patches visited.

adjustment, we place three nodes as shown in Figure 10 along
different corridors and let them form multi-hop relay links
(node 1↔node 2↔node 3). Next, we move node 1 to south so
that the quality of the link between node 1 and 2 is degraded,
and we let node 2 and 3 maintain QoS demand (SPDR=0.85).
We ran the same experiment 10 times and measured the final
positions of node 2 and 3 after their adjustment.

Figure 13 shows the effectiveness of our adjustment in
coping with link condition changes. The unshaded part of the
figure shows the robots’ final positions (denoted as triangles)
on the corridor. Starting from their original positions, denoted
as N2 and N3, node 2 first starts its spatial probing to adjust
its position. Next, once node 2 finds a location that satisfies
the QoS requirements (0.85), the node informs node 3 of
its adjustment through a broadcast-based message handshake.
Then, node 3 starts adjusting its own position with respect to
the new location of node 2 in order to maintain the required
QoS. As shown in the figure, each robot successfully senses its
direction (e.g., east for node 2) without relying on movement
information of node 1 and moves in the direction that node
1 moved. In addition, this iterative adjustment significantly
reduces the average measurement overhead. Compared to the
exhaustive probing where node 2 and 3 have to measure SPDR
of every patch in the corridor, the spatial probing in MARS
selectively measures SPDR over the fixed previous node. As
shown in the inset graph, the iterative adjustment in MARS
reduces the total number of measurements (N2+N3) by 72%
compared to the exhaustive probing-based adjustment (Ex.).

3) Maintaining Positioning Accuracy: We now turn to the
quantitative evaluation of MARS’s positioning system. We first
set up one large square space (240 cm × 240cm) with four
artificial landmarks in our lab. In the square, we let the robot
collect positions of the four landmarks through the landmark
collection technique described in Section VI-C. As expected,
the robot properly detects all the landmarks with error of at
most 2cm from their true positions, and this measured land-
mark information is used for the robot’s positioning during the
following random walks. At each point on the random walk,
the robot updates its position (i.e., believed-to-be position)
based on its previous position and movement information. At
the same time, the robot takes a sonar scan (as in Figure 9(a))
and derives its current true position using the scanned result.
Next, the robot derives the position error by comparing the
believed-to-be position and the true position from the scan.
Finally, the robot updates its position information with the
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Fig. 13. The multi-hop optimization result. In MARS, relay nodes optimize
each position one-by-one when the link conditions changed. Triangles denote
adjusted nodes’ positions.
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Fig. 14. Accuracy in correcting location error. The positioning system in
MARS accurately corrects the error in its location information, on average,
within 7.3cm error.

true position and drives itself toward the next random point.
Figures 14 shows the robot’s true positions relative to

believed-to-be positions (0, 0). As shown in the figure, the
MARS’s positioning system keeps the average location error
less than 7.3cm, thanks to landmark-based position measure-
ments. In addition, the distributions of errors is found to be
independent Gaussians on x and y with an almost diagonal
covariance matrix. This error is due mostly to the drifts caused
by the heading error, but it is small enough for the robot to
correct the error using the landmarks and continue its walk
without unbounded growth of error.

C. Simulation

We also evaluated the effectiveness of MARS in energy
savings by using the ns-2 simulator [12]. We implemented
MARS as a mobile node in ns-2. We used the wireless
extension for 802.11 MAC in ns-2 and used a string-type relay
topology with three nodes as in our previous experiments for
comparison. While reducing the unit grid size of the spatial
probing algorithm, we measured the total energy consumption
during the relay network (re-)formation. Note that the smaller
the grid size, the higher reformation accuracy MARS can
achieve. The reformation is triggered by changing the link-
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Fig. 15. MARS’s energy savings. The spatial probing algorithm in MARS
saves energy by reducing the navigation distance as well as the number of
measurements, compared to the exhaustive measurements.

quality requirement (from 0.75 to 0.85) of the link between
the first and second nodes. Then, the second and third nodes
sequentially relocate themselves to meet the requirements. To
calculate energy consumption, we use unit energy levels for
(i) robot’s moving distance (i.e., 8.27 J per meter) and (ii)
link-quality measurement (2.184 J per vertex), both of which
are derived from measurements in [50], [51] together with
the MARS measurement protocol. Here, we do not consider
the energy consumption for operating a wireless router board,
since the wireless router is assumed to be always on for
network connectivity. For comparison, we also implemented
and used an exhaustive measurement strategy.

Figure 15 shows MARS’s energy savings per node com-
pared to the exhaustive strategy. As shown in the figure, the
MARS probing algorithm saves energy by up to 54% (for the
grid size of 0.25 m). In addition, as the grid size decreases, the
energy savings comes from the reduced navigation distance
(i.e., Hier-Dist) as well as the reduced number of measure-
ments (Hier-Measure) achieved by the MARS’s hierarchical
probing algorithm.

VIII. CONCLUSION

A. Concluding Remarks

In this paper, we have presented MARS—a mobile wireless
router that is aware of spatial diversity in wireless link-quality.
MARS autonomously measures spatial wireless link-condition
and reforms a wireless relay network with neighboring nodes.
We have built MARS’ prototype using commodity robots and
IEEE-based wireless routers. Using extensive experimental
evaluation, we have demonstrated the feasibility and practical-
ity of MARS for dynamic (re)formation of a multi-hop relay
network. MARS demonstration videos are available in a pub-
lic website of http://kabru.eecs.umich.edu/bin/
view/Main/SMART.

B. Remaining Issues

While the current prototype targets 802.11-based indoor
applications, MARS can be extended further by addressing
the following issues:

• Flexible deployment scenarios: Even in cases when routers
are deployed by humans [3], MARS can support the deploy-
ment scenario via iterative adjustments around each drop
point. This is especially useful for inherently hazardous
scenarios such as rescue or military applications, but a
robotic platform that is more capable than the iRobot is
necessary for such applications.

• Fully automatic landmark collection: The current land-
mark collection in MARS requires a few manual position
measurements. This may be time-consuming and not scal-
able in large networks. We plan to investigate ways to fully
automate this procedure [31].

• Transmission rate adaptation: In this paper, MARS focuses
on the mobility of a wireless router and disables the use
of link-layer rate adaptation (i.e., fixed rate). However, it
would be an interesting to jointly consider transmission rate
adaptation (e.g., [6]), which we plan to investigate as a
separate paper.
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