Toprics IN AD HOC NETWORKS

Communication Paradigms for
Sensor Networks

Dragos Niculescu, NEC Laboratories America

1 One way to reduce the
high cost of communica-
tion is to use optical
instead of RF links. While
optical communication is
several orders of magni-
tude cheaper energy-wise
than RF [4], it is also very
directional, which makes
deployment of large popu-
lations of sensors nontriv-
ial.

ABSTRACT

When compared with now classical MANETS,
sensor networks have different characteristics,
and present different design and engineering
challenges. One of the main aspects of sensor
networks is that the solutions tend to be very
application-specific. For this reason, a layered
view like the one used in OSI imposes a large
penalty, and implementations more geared
toward the particular are desirable. This survey
presents the three main paradigms for communi-
cation in ad hoc networks and discusses their
applicability for routing, querying, and discovery.
We conclude that the node-centric approach,
although the oldest and best understood, is not
the most appropriate for large-size low-energy
application-specific sensor networks.

INTRODUCTION

Sensor networks are in many ways similar to the
much studied mobile ad hoc networks
(MANETS), but at the same time have some
important differences. The similarities are the ad
hoc nature of topology, shared communication
medium, and problems of connectivity. The dif-
ferences are that usually sensor networks involve
little spatial mobility, are more resource con-
strained, and therefore pose new scalability
problems in two directions. These are with
respect to the size of the network and the size of
each node. Sizes of sensor networks are likely to
grow as they will become more pervasive. An
ON World study [1] predicts that in 2010 more
than 465 million radio frequency (RF) modules
for sensors will ship, compared to 3 million in
2003. Thirty-five percent of these modules will
be used for industrial applications, and 28 per-
cent for home automation and control.

While the scalability of large networks is a
known problem, the reduced size of nodes is less
often acknowledged. Human interaction with
these small entities is not possible on a per node
basis, as simple necessities such as configuring or
battery replacement become very costly. The
small size also implies scarce resources: memory,
CPU, and battery. One extremity of the resource
spectrum is RFID technology. It can be consid-
ered a variation of the sensor network if we see
RFID readers as sensors of tagged objects. They
”sense” discrete values from a known set, rather

than analog values from some monitored phe-
nomena. There are passive RFID tags operating
without a battery, using only energy from the
reader. A small amount of data may be stored
on certain tags, but they are not expected to
have any communication or computation capa-
bility. These and other sensor networks are
expected to help with management of large col-
lections of objects (assets, packages), but size
and other resource constraints make the man-
agement of the network itself a problem.

Even if physical mobility is less of an issue in
most sensor deployments, sensors have small
batteries or draw energy from the environment,
meaning that they have to operate on a reduced
duty cycle. This means that the sensor operates
only a fraction of the time, but has to be provi-
sioned properly in order to maintain connectivity
and relay capacity. This on-off behavior of nodes
is a significant factor that must be taken into
account for all communication and synchroniza-
tion aspects of the sensor network.

Most of the research aspects in sensor net-
works are in one way or another linked to com-
munication. That is the central issue of sensor
networks because it is more expensive energy-
wise than computation. It takes on the order of
10 uJ to send 100 bits for 100 m [2], but it takes
only 0.06 nJ to execute a 32-bit instruction [3] —
more than 100,000 times less. While we cannot
eliminate this discrepancy,! because the main
task of a sensor node besides sensing is to relay
information from other nodes, we can try to
trade off communication for computation wher-
ever possible. Compression and aggregation of
data are clearly candidates for this task, but
other ideas from active networking could also be
incorporated. The main justification for this view
is that sensor networks are very application-spe-
cific, so integration in a layered hierarchy may
not be the best way to approach this application
diversity. In fact, a lot of current research focus-
es on cross-layer optimizations for sensor net-
works, implicitly acknowledging the shortcomings
of the layered approach.

The data delivery scenario complexity in a
sensor network ranges from simple source-desti-
nation communication to a multiple source-mul-
tiple destination communication mesh with
specified aggregation tasks, data rates, and guar-
antees. Data dissemination and aggregation ser-
vices (routing, querying, and discovery) have to be

116

0163-6804/05/$20.00 © 2005 IEEE

IEEE Communications Magazine ¢ March 2005

adapted to this difference in complexity, rather
than have them pay the penalty of generality for
jobs that are application-specific anyway.

Routing is the most basic aspect of data deliv-
ery, and a large body of literature is available for
MANETs addressing trade-offs with respect to
mobility, throughput, and protocol scalability. In
sensor networks, however, traffic is unlikely to
be similar to Internet traffic that is driven by a
human interactive component. This difference
consists in both patterns and requirements.
Sensed data is specific to the sensed phenomena,
and might be compressed, aggregated, delayed,
or express delivered, depending on urgency.
Because of these differences, routing protocols
that are specific to sensor networks need to be
designed.

Querying is a usually a pull-based retrieval
logically similar to that used in databases. In
fact, the stream of data generated by the sensors
can be seen as a table that can support spatial
and temporal queries. Querying is tightly cou-
pled with routing in providing a unified data
delivery scheme. Similarly, it has to be adapted
to the conditions of the sensor network, but still
maintain the familiar interface of classical
databases. The querying category is in fact larger
than simple pull procedures. It may include push
strategies triggered by subscriptions and events.

Discovery is an important service that directly
addresses the autonomous operation of the net-
work. A node needs to discover by itself a sink
for the data it generates, without human config-
uration. A network administrator needs to dis-
cover the topology of the network to verify the
coverage. Depending on the size and density of
the network and the energy budget, the discov-
ery might involve a certain resolution of the net-
work. All these problems are specific to sensor
networks and have to be addressed in a manner
that considers energy efficiency, resolution, and
the on-off nature of the nodes.

These three aspects of dissemination and
aggregation (routing, querying and discovery)
are examined in this survey from the point of
view of three communication paradigms: node-
centric, data-centric, and position-centric. The
next three sections present these paradigms, and
the solutions they provide for data dissemination
and aggregation. We comparatively discuss the
trade-offs of the three paradigms, how they deal
with design challenges such as scalability and
robustness, and conclude with a summary.

NODE-CENTRIC

The “traditional” way to look at a network is
to have nodes labeled with some names and
implement routing based on those names. The
current Internet is using this node-centric
approach, because it is very intuitive, with good
reason: it was used by mail and phone systems
before. The node-centric approach can easily
incorporate hierarchical addressing, but that may
not be a usable advantage in sensor networks
that are often organized in a flat logical layout.

One of the original advantages for which IP
was praised was the ability to make routing invis-
ible to upper layers, and degrade gracefully in
the face of node failures by rerouting. This was

accomplished, though, by using a single name to
identify nodes and endpoint communication
entities. In sensor networks, communication end-
points should not be identified by node names,
mainly because of the on-off nature of the net-
work (reduced duty cycle). The layered architec-
ture, although not conceptually linked to
node-centric addressing, is the de facto standard
in current networks. Sensor networks, however,
are application-specific, and clearly separated
layers pay an unnecessary generality penalty.

A recent review of unicast routing protocols
for ad hoc networks [5] classifies them based on
the manner in which they react to route invalida-
tion. Proactive algorithms maintain routes all the
time to all destinations. Reactive algorithms dis-
cover routes only when they are needed or
become invalid. The third category is that of
hybrid approaches, which have reactive and
proactive components. The trade-off between
the approaches is mainly with respect to degree
of mobility that determines the lifetime of the
path. A proactive approach is better in a fixed or
low-mobility network, whereas a reactive one
works well when paths break often. In the con-
text of sensor networks, mobility has a different
face: low duty cycles and random sleep periods
for nodes. It is likely that paths will very often be
invalidated in either approach, even if positions
of nodes never change.

Because of the layer separation, discovery
and querying are left for the application layer,
which has to rely on lower-level primitives such
as unicast, broadcast, and multicast. Discovery is
actually a primitive used by reactive routing
algorithms to find paths to a destination. This is
usually achieved by network-wide broadcasting,
implemented as controlled flooding. In dense
RF networks this leads to a phenomenon known
as a broadcast storm [6] in which many nodes
sharing the communication medium rush to
transmit the same data in an attempt to ensure
full coverage of the network. This effect has high
energy costs for nodes that may be on a very
limited budget (e.g., a solar panel generates 1
mJ/mm?/day using indoor light [4]).

To reduce the cost of discovery, researchers
have investigated methods that leverage the
specifics of the resource to be discovered: fish
eye state, location servers, and small world prop-
erties, to mention just a few. Fish eye state
methods make use of the principle that only
information close to a node is detailed and often
updated, whereas faraway information has lower
resolution or freshness. “Small world” properties
are used in other work to reduce the length of
discovery paths in large graphs (the theory of the
small world is that any two people in the world
know each other through six acquaintances on
average). Another method to reduce discovery
cost includes the use of location servers. For
example, to discover position information, a
quad tree partitioning scheme is employed in [7],
an article briefly discussed later. Other methods
use Bloom filters to store compressed member-
ship information so that each node’s state is only
logarithmic in the size of the network. If the
resource to be discovered is the address of
another node, mobility can be used to facilitate
updating of the location servers. In general,

|
Discovery is actually
a primitive used by
reactive routing
algorithms to find
paths to a
destination. This is
usually achieved by
network-wide
broadcasting,
implemented as
controlled flooding.

IEEE Communications Magazine * March 2005

X

sink

(a) Interests set up
gradient tree

src src
1 A
src— A SrC el B
NN AP
w. :
e A) S A #
sink sink
>
\ g
sink sink

(b) Data flows

(c) Continuous gradient
along gradients i

reinforcements

M Figure 1. Directed diffusion.

however, the problem of discovery in a node-
centric network is dealt with by the upper layers,
including the application itself. It is worth noting
that discovery and updating are similar to the
well studied problem of mobility management in
cellular systems, which imposes a trade-off
between the cost of propagating mobility updates
and the cost of paging.

Node-centric addressing handles the problem
of multicast well, which was extensively researched
for current networks. In sensor networks, multi-
cast groups with memberships, joins and leaves
are likely to be overkill to maintain, especially for
situations when the group is short-lived (e.g., for
distribution of a query or a short notification).
Also, a more frequent occurrence is actually the
opposite problem, gathercast, or many-to-one
communication, when several sources of data
stream to the same sink. This problem is directly
addressed by the next paradigm.

DATA-CENTRIC

The data-centric approach was found trying to
have a network answer the queries of the type
“Give me data that satisfies a certain condition.”
Before examining the similarity to a database
query, let us see how this query gets answered in
a node-centric network. The identities of the
nodes generating data that fits the conditions
(e.g., range of temperature) is not known, so the
querier must use network-wide discoveries to find
these identities. If several sinks are interested in
similar data, separate paths must be discovered
and maintained independently, while data aggre-
gation can only be performed at destinations.

The most important aspect of the data-centric
paradigm is that it is the content of the sensor-
generated data that drives most implementations
of the upper layers: discovery, routing, and
querying. Aggregation is performed in the net-
work, and packets are routed based on their
content, while the identity of nodes is never
involved in the forwarding process.

DIFFUSION

Directed diffusion [8] is a scheme that combines
discovery, querying, and routing into one proce-
dure. The easiest analogy is to a publish sub-
scribe system in which sinks declare their interest
in some data, interest that eventually reaches the
sources of data. The first stage is broadcasting

the interest from the sinks to the entire network.
This effectively sets up a reverse tree rooted at
the sink — the routing entries are called gradi-
ents here. If several sinks are interested in the
same data, diffusion may reuse existing gradients
or create new ones. The resulting structure is a
collection of overlapping trees (directed acyclic
graphs) that can drive data from multiple sources
to multiple destinations. In Fig. 1a, only the
broadcast from one source is indicated. The
routing table at intermediate nodes in the tree
contains only next-hop information and the actu-
al gradient. Sources that generate data matching
the gradient will forward data along the graph
(Fig. 1b), and the sink reinforces the best paths,
while the others time out and are removed from
the nodes. The last two stages, forwarding and
reinforcing, are active for the entire period of
data gathering.

When several sinks are interested in the same
data, forwarding nodes perform packet duplica-
tion because for the given interest they have sev-
eral next hops in their tables. This publish
subscribe method in fact achieves on-demand
routing support for many-to-many communica-
tion.

Diffusion scales well for large networks with
few types of popular queries. The number of
gradients kept in nodes depends on the number
of queries and density, not on the number of
sources or sinks. In Fig. 1b, node A has only one
gradient specifying the outgoing neighbor for
this query, regardless of the incoming neighbor.
Node B has to duplicate incoming matching data
to two outgoing neighbors toward the sinks. The
difference from the node-centric approach is
that the table here does not scale with the num-
ber of communication endpoints, but with the
complexity of queried data. This makes an
important decision factor when choosing it as a
communication paradigm in a large network.

SENSOR DATABASES

Another intuitive way to abstract the sensor net-
work is that of a database. The COUGAR pro-
ject [9] considers that sensors represent the
schema, while the tuples are the readings at any
given time. The sensor network is assumed to
operate on slotted synchronized time, so each
sensor has a reading or a null value for a given
time. Interface between the query and the net-
work is ensured with a slightly modified SQL
which also allows for references to sensors that
are spatially close or have other types of rela-
tionships between readings. The queries
COUGAR is trying to address are long running,
need to correlate and aggregate data from dif-
ferent sensors, and may include geographical
restriction clauses. For example, to answer the
query “Generate a notification whenever two
sensors within 5 meters of each other measure
simultaneously an abnormal temperature,” the
SQL is

SELECT Rl.s.detectAlarmTemp (100),
R2.s.detectAlarmTemp (100)
FROM R R1, R R2
WHERE $SORT ($SQR(R1.loc.x -R2.loc.x)+
$SOR(R1.1loc.y -R2.loc.y))<5

AND Rl.s > R2.s AND $every();

118

IEEE Communications Magazine ¢ March 2005

In COUGAR, query processing is performed in
a database front-end, but some basic functions
are performed by sensors. The relations in the
database are either partitioned across the set of
devices or stored in the front end, and the query
execution plan has to face asynchronous opera-
tion and multiple output responses.

TinyDB is a newer project [10] that also
supports an SQL-like interface, but each sen-
sor node has its own query processor. As in
COUGAR, sensor data is a single table with
one column per sensor type, and tuples are
appended periodically. It extends SQL with
additional features such as in-network mate-
rialization points, joins, grouped aggrega-
tions, and triggers. The key energy saving
feature is the use of semantic routing trees
aimed to reduce the amount of communica-
tion involed in answering a query. The func-
tioning of TinyDB is organized into these
stages:
¢ Use flooding to build a spanning tree root-
ed at the user.

Synchronize the network, and define epochs
and intervals.

Broadcast a query along the tree.

During each epoch:

—Leaves produce a row of data, and apply
the filter/query.

—Partial state is passed up during the sched-
uled interval.

—Parents aggregate partial states from all
children, apply filter/quer, and pass up new
partial state.

These database approaches have the advantage
of a simple high-level interface to the sensor net-
work, but really address only one type of prob-
lem, that of answering continuous tuple-based
queries. In fact, the underlying implementation
of the network might still be node-centric, but
the only interface available to the user is data-
centric.

When large amounts of data are to be
relayed over the network, the natural question
arises of whether compression can be used. For
example, when watching the activity of a sensor,
the question is if the output can be predicted,
in which case it is not news anymore and does
not need to be transmitted. The data receiver
may achieve substantial savings by instructing
the sensor to actually send data only when it
does not satisfy a certain prediction. The PRE-
MON project [11] addresses the issue of how to
perform in-network compression and is summa-
rized here as an example of a novel data-centric
view of the sensor network. A snapshot of read-
ings from all the sensors in the network at the
same time is akin to an image. Monitoring the
entire network then becomes watching a “sen-
sor movie.” The similarity continues for the
compression solution, because depending on
the deployment scenario, it is possible that
there are both spatial and temporal correlation
between sensor readings. MPEG compression
already addresses these types of dependencies,
but for sensor networks the compression must
be performed in a distributed manner, balanc-
ing the cost of transmission with that of pro-
cessing, all under the restriction of limited node
storage.

POSITION-CENTRIC

If we see sensor networks as a way to instrument
the physical world, the reported data almost
always has to be associated with a position (e.g.,
temperature map or motion detection). While
global coordinates and compatibility are desir-
able, the Global Positioning System (GPS) may
not always be used because of line-of-sight con-
ditions, form factor and power requirements, or
cost. The problem of positioning nodes in the
field has been addressed by many research com-
munities: vision, networking, robotics, and signal
processing. Many of these solutions do not adapt
directly to the size and power constraints of the
sensor, but careful design of the sensor may
enable hardware features that allow for effective
positioning.

Because sensor networks’ main goal is to
monitor physical space, their operation is intrin-
sically linked to location. In many cases it makes
more sense to address an area of sensors by
their location rather than by their IP addresses.
The position-centric approach uses positions of
nodes as a primary means to address and route
packets. In its simplest form, called Cartesian
forwarding, if a source knows the position of the
destination, it forwards packets to the neighbor
closest to the destination. This method was actu-
ally mentioned in the 1970s, in the context of
what were then called packet radio networks,
precursors of today’s ad hoc networks. Several
position-based algorithms for routing and discov-
ery are surveyed in more detail in [12].

The position-centric way of addressing comes
with a number of advantages and disadvantages.
One good thing about it is that there is no need
for routing tables in the network, since every
node can decide how to forward packets based
only on the destination of the packet and some
locally gathered information about its immediate
neighbors. Another positive aspect is indepen-
dence from mobility: as long as intermediate
nodes with known positions exist between source
and destination, routing is performed without
the penalty of route discoveries and updates.

The disadvantage is that the source must
know the position of the destination. However,
this is an implicit requirement in many applica-
tions, like sensor networks that relay all data to
a unique known collection of static sinks, or
when the requester of the data includes its posi-
tion with the request.

We now examine two important aspects of
position-centric forwarding: applications that can
be implemented under this paradigm, and
resilience in front of obstacles and nonuniform
density networks.

ROUTING ON TRAJECTORIES

While most position-centric implementations use
straight lines, there is reason to use non-straight
lines for routing. Trajectory-based forwarding
(TBF) [13] is a generalization that allows for-
warding data along arbitrary curves in order to
solve problems like routing, broadcasting, multi-
casting, and discovery. It is a source-based
method in that the source declares the path as
an X(¢),Y(¢) parametric encoding included in
every data packet. Intermediate nodes, knowing

|
Because sensor
networks” main goal
is to monitor
physical space,
their operation is
intrinsically linked to
location. In many
cases it makes more
sense to address an
area of sensors by
their location rather
than by their IP
addresses.

IEEE Communications Magazine * March 2005

119

S S
A
7N |
(a) (b) (c) (d)

(e) ®

M Figure 2. Applications of TBF.

their own position and the equation of the curve
the packet is supposed to follow, perform greedy
forwarding decisions that do not depend on end-
points or names of intermediate nodes.

A sampling of applications that can take
advantage of nodes’ positions is shown in Fig. 2.
A simple flooding replacement, shown in Fig. 2a
sends radial trajectories from the point of origin,
and relies on the broadcast nature of the medium
to deliver the packet to as many nodes as possi-
ble. A better approach is shown in Fig. 2e, where
parallel rays ensure better coverage when the
spacing between the rays is dimensioned around
one wireless radio range. TBF can be used to
easily achieve diversity of the paths, useful for
increasing capacity, load balancing, or increased
resilience, as shown in Fig. 2b and 2c. As noted
in previous paragraphs, discovery is an important
part of data dissemination, and usually an expen-
sive one. Using trajectories, a five-step procedure
(Fig. 2d) that avoids flooding the entire network
with requests works as follows: servers § adver-
tise their location along arbitrary lines (1), and
clients C also query along arbitrary lines (2);
some lines will always intersect, and the intersec-

M Figure 3. Broadcasting approximation using a self-overlapping trajectory.

tion nodes I are able to notify the clients (3) and
the servers (4) about their respective locations
for direct TBF-based communication (5). In
order to guarantee intersection of client and
server directions, it is necessary to send lines in
three or four directions from both server and
client. Simple trajectories may be composed to
achieve arbitrary distribution paths such as the
ones needed for multicast (Fig. 2f), and regular
trees describing repetitive structures can be spec-
ified in a compact low-overhead form. For exam-
ple, to achieve the plane filling structure in Fig.
3, a simple recursive relation is used: after
advancing one unit in some direction, the trajec-
tory splits 60° left and right, recursively propagat-
ing that same trajectory code that eventually
generates the beehive structure. It is worth not-
ing that with a larger unit, this procedure may be
used to discover the topology of the network at a
lower resolution, without actually discovering all
the nodes of the network. For management pur-
poses, this procedure is much cheaper energy-
wise than flooding, but still provides the shape
and connectivity conditions of the network.

ROUTING AROUND OBSTACLES

The early solutions for position-centric routing
use simple greedy strategies to forward packets.
In cases when obstacles interrupt the trajectory,
or the density is simply not sufficient to support
forwarding close to the trajectory, packets are
dropped. Even in simple cases, a node may have
no neighbor closer to the destination due to a
local feature of the topology, although after a
slight detour, a reasonable path may be found.
The FACE algorithm [14] uses a planariza-
tion of the graph in order to guarantee delivery
of position-centric forwarding. There are several
localized methods that can compute a planariza-
tion of the graph using one-hop or two-hop
information only. The intuition behind pla-
narization is that the plane is seen as a map,
each region assigned to a country. A source-des-
tination (SD line in Fig. 4) crosses a number of
countries, and it is possible to guarantee delivery
by making sure that all the regions are traversed
in order. While in most cases it is not necessary
to actually traverse the region, as greedy for-
warding does a reasonable job, sometimes holes
in connectivity or obstacles require that the
packet follow the lefthand rule to navigate
around the region in order to find the exit point.
The outside boundary of the network is also a
face, so the lefthand rule works in that case as
well. This last point emphasizes a potential dis-

120

IEEE Communications Magazine ¢ March 2005

advantage, of requiring relatively dense networks
in order to achieve reasonable approximations
for the desired trajectories (i.e., without large
detours).

SUPPORT FOR NODE-CENTRIC APPLICATIONS

In order to use legacy software (node-centric) on
top of a position-centric network, a location ser-
vice is necessary that finds the position of a
given address. Grid location service (GLS) [7] is
a decentralized service that runs on the mobiles
themselves, requiring no fixed infrastructure.
Each node A, being a potential destination,
establishes a set of location servers, each serving
a progressively larger region, depending on the
distance to A. When A moves, it updates its
location with all its servers. To answer a location
query from node B, the communication involves
the least square containing both A and B, which
in extreme cases may be the entire map, even if
A and B are close to each other. Location server
management and location updating resemble
geographic forwarding as they operate in similar
ways. While geographic forwarding pushes pack-
ets closer to the destination in physical space,
GLS moves packets progressively closer to the
destination in ID space.

Bridging between different paradigms is
important not only because most existing soft-
ware is for node-centric networks, but also
because it offers another design option to mix
and match features from different communica-
tion and addressing approaches.

DiSCUSSION

It is interesting to compare the surveyed com-
munication paradigms (Table 1) from the point
of view of interchangeability and compatibility
with legacy networking code. It is clear that the
node-centric/layered approach, which was
designed with this goal in mind, is best in this
respect. When comparing the data-centric and
position-centric approaches, it is the position-
centric that provides more separable functionali-
ties, similar to a layered approach. The broadcast
storm problem has a number of solutions, the
best involving position-based improvements at

M Figure 4. The FACE algorithm routes around obstacles using the lefthand rule.

the medium access control (MAC) layer. It is
possible to use positions at the routing layer, for
discovery, unicast, and multicast. Upper layers
can also benefit from node positions, for appli-
cation-level discovery, increased reliability
through path diversity, and topology discovery at
various resolutions. Data-centric approaches, on
the other hand, tend to provide a top-to-bottom
solution, as is the case with directed diffusion. In
fact, directed diffusion solves only one problem,
but solves it right.

A new IEEE standard, 802.15.4 [15], is aimed
at low-power low-distance communication
devices that may allow years of battery life. The
standard allows for both hierarchical and flat
peer-to-peer topologies, and provisions for one-
hop reliability and real-time guarantees. At the
lower layers, there may be a choice between RF
and optical communication, but it is still unclear
what the logical and address organization of
future sensor networks will be. It can be flat with
identical nodes, or hierarchical with cluster
heads that are more powerful in terms of stor-
age, computation, and communication. Node-
centric communication is suited to hierarchical
addressing, but the other two approaches are
currently debated mostly in flat addressing sce-
narios.

Another comparison criterion is mobility,
which is a major problem in node-centric net-
works because paths and connectivity are made
of node names. Solutions here are either awk-

Node-centric Data-centric Position-centric

Compatibility v x =
Layered v X v
Additional requirements ¢ v X (Node positions)
Routing

Mobility X X v

Scalability X v v

Multicast/gathercast X v v

Disconnection X v v
Discovery X (Flooding)} ¢ (Built in) ~ (Some support)
Querying X (Upper layers) ¢ (Built in) X (Upper layers)

M Table 1. Comparison of the three paradigms.

IEEE Communications Magazine * March 2005

121

|
Data collection has
an inherent spatial
aspect because the
main application is
monitoring of the
physical space.
It also has a data
centric temporal
aspect when the
network has to
answer or monitor
specific queries.

ward (triangle routing in mobile Internet) or
wasteful (rediscovery of paths in ad hoc node-
centric networks). Here position-centric
approaches have the advantage because they do
not require particular nodes to be involved in
forwarding, but use whichever ones provide con-
nectivity. This is also the case with sensor-specif-
ic on-off-type mobility. Mobile directed diffusion
is still a research subject, although the original
algorithm was not designed to support mobility.

Considering the application-specific nature of
sensor network design, a direction worth explor-
ing is that of active sensor networking. From a
security point of view, running arbitrary code
received over the network might be less desir-
able, but the advantages are that the communi-
cation can really be tailored in all aspects ranging
from the link layer to the application for the task
at hand. A position-centric approach like TBF
makes use of evaluation of expressions to encode
trajectories, and can benefit from an active
approach. Compression and aggregation tasks
require in-network computation that cannot be
predicted at design time, so providing installable
code as a basic functionality helps in installing
any of the mentioned paradigms, or even switch-
ing between them. Some of the projects explor-
ing the possibility of installing arbitrary code on
sensors are SensorWare [16] and Maté [17].
Their use of TCL scripts and bytecode allows
installation of complex distributed algorithms
that can access all the communication and sens-
ing capabilities of each node.

Finally, if sensor networks are to be deployed
in large sizes, scalability with respect to the num-
ber of nodes becomes a deciding factor in choos-
ing a communication paradigm. Node-centric
suffers not only with respect to the size of routing
tables and frequency of updates, both of which
depend on the total number of nodes, but also
with respect to the address space. A data-centric
approach such as diffusion scales routing tables
with the number of queries to be supported, also
providing better scalability in large networks.

Data collection has an inherent spatial aspect
because the main application is monitoring the
physical space. It also has a data-centric tempo-
ral aspect when the network has to answer or
monitor specific queries. Besides the inherent
advantage of being more application-specific,
position- and data-centric paradigms also pro-
vide scalability advantages for routing, querying,
and discovery. An important difference is that
they do not link endpoint communication enti-
ties to node names, as the node-centric approach
implicitly does. Considering all the above fac-
tors, it is likely that position-centric, data-centric,
or maybe a combination of them is the best bet
for future sensor networks.

SUMMARY

The quality of ad hoc networks operating with-
out infrastructure in a completely decentralized
manner becomes a disadvantage when trying to

design energy-efficient protocols. Communica-
tion, which is the most energy-costly aspect of
the network, can be organized in three funda-
mentally different ways: node-centric, data-cen-
tric, and position-centric. Node-centric
communication is the most popular and well
understood paradigm, being currently used in
the Internet. The other two surveyed in this arti-
cle, data-centric and position-centric, are more
scalable, better adaptable to applications, and
conceptually more appropriate in many cases,
and therefore may successfully challenge the
node-centric way of looking at the sensor net-
works.

REFERENCES

[1] C. Chi and M. Hatler, “Wireless Sensor Networks: Mass
Market Opportunities,” ON World Inc., Feb. 2004.

[2] IEEE Std. 802.11, “Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification,” 1999.

[3] ARM Ltd., ARM7TDMI core processor product overview
(0.13 mm), 2004, http://www.arm.com/products/CPUs/
ARM7TDMI.html

[4] B. Warneke et al., “Smart Dust: Communicating with a
Cubic-Millimeter Computer,” IEEE Comp., vol. 34, no. 1,
Jan. 2001, pp. 45-51.

[5] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, "A
Review of Routing Protocols for Mobile Ad Hoc Net-
works,” Ad Hoc Networks, vol. 2, no. 1, Jan. 2004.

[6] Y.-C. Tseng et al., “The Broadcast Storm Problem in a
Mobile Ad Hoc Network,” Wireless Networks, vol. 8,
no. 2/3, 2002, pp. 153-67.

[7]1 J. Li, J. Jannotti et al., "A Scalable Location Service for
Geographic Ad Hoc Routing,” ACM MobiCom, Boston,
MA, Aug. 2000, pp. 120-30.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Direct-
ed Diffusion: a Scalable and Robust Communication
Paradigm for Sensor Networks,” ACM MobiCom,
Boston, MA, Aug. 2000.

[9] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards Sensor
Database Systems,” Proc. 2nd Int'l. Conf. Mobile Data
Mgmt., Springer-Verlag, 2001, pp. 3-14.

[10] S. R. Madden et al., “The Design of an Acquisitional
Query Processor for Sensor Networks,” SIGMOD, San
Diego, CA, June 2003.

[11] S. Goel and T. Imielinski, “Prediction-based Monitoring
in Sensor Networks: Taking Lessons from MPEG,” ACM
Comp. Commun. Rev., vol. 31, no. 5, Oct. 2001.

[12] M. Mauve, J. Widmer, and H. Hartenstein, “A Survey
on Position-Based Routing in Mobile Ad Hoc Net-
works,” IEEE Network, Nov./Dec. 2001, pp. 30-39.

[13] D. Niculescu and B. Nath, “Trajectory Based Forward-
ing and Its Applications,” ACM MobiCom, Sept. 2003.

[14] P. Bose et al., “"Routing with Guaranteed Delivery in
Ad Hoc Wireless Networks,” 3rd Int'l. Wksp. Discrete
Algorithms and Methods for Mobile Comp. and Com-
mun., Seattle, WA, Aug. 1999.

[15] IEEE Std. 802.15.4, “Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANSs),” 2003.

[16] A. Boulis, C. C. Han, and M. B. Srivastava, “Design and
Implementation of a Framework for Programmable and
Efficient Sensor Networks,” ACM MobiSys, San Francis-
co, CA, May 2003.

[17] D. Culler and P. Levis, “Maté: A Tiny Virtual Machine
for Sensor Networks,” Int'l. Conf. Architectural Support
for Prog. Languages and Op. Sys. (ASPLOS X), San Jose,
CA, 2002.

BIOGRAPHY

DRAGOS NicULEsScU (dragos@nec-labs.com) received a Ph.D.
in computer science from Rutgers University, and is cur-
rently a researcher at NEC Laboratories, Princeton, New Jer-
sey. His current research includes issues in sensor systems,
mobile computing and networking, voice over IP, and QoS.

122

IEEE Communications Magazine ¢ March 2005

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

