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Abstract

Active networks address the problem of slow network evolution, when compared with the
evolution of applications. The active approach builds programmability into the network, so that
new protocols and functionalities may be added later. While classical, “passive” routers all
implement the same functionality, the active routers all implement the same computational model.
The active technology is motivated twofold by user need: the increasingly popular applications
that require custom processing in the network, and the backlog of Internet services that are yet to
become ubiquitous (IPv6, multicast, mobility). The main issues in active networking are mobility,
efficiency, safety and backwards compatibility.

In this paper we explore the status of research in the area active networks, the proposed
architectures, the issues they address, and the currently under way standardization efforts to
provide a common framework for the active nodes.

1 Introduction

Active networking [WT96] is a step beyond the tradi-
tional networking technology in which the routers have
the role to merely forward datagrams and update routing
tables. Its primary goal is to modify the switching infras-
tructure of the network on the fly, and more generally, to
allow customized computation to be run in the network.
Although some argue that putting functionality in the
network would contradict the “end to end argument”, a
number of widely used applications may suggest that this
is not necessarily a bad thing. Here we refer to ad hoc
solutions that in time became de facto applications, such
as web proxies, firewalls, multicast, media gateways and
overlay networks. What also comes as an argument for
the active technology is the slow evolution of networks:
it takes years to deploy a new protocol on the Internet,
and this only after it passed through the slow process
of standardization. Active networks allow deployment
of new protocols dynamically, on a per domain basis or
even per application or per user basis.

Problems posed to the the active networking tech-
nologies, as identified in [TGSK96] are mobility, effi-
ciency and safety. Due to the heterogeneous nature of
the Internet today, mobility is a must, as the edge of the
network has no knowledge about the particular architec-
ture of a router. Efficiency is a concern because running
customized code could potentially slow down the non-

active traffic that requires from the internal nodes only
the basic service of forwarding. It is therefore desirable
that the active networking could be installable as a ser-
vice amongst other differentiated services, or, a different
point of view may argue that differentiated services may
be implemented under the active architecture. Safety
is an issue if entities from the network have access to
the shared resources of a node, which now involve not
only bandwidth, but also processing time, and memory
local to the node. Another concern regarding the deploy-
ment of the active networks is the inherent latency that
would be introduced by the extra processing in nodes.
However, the bandwidth and the computational power
grew respecting Moore’s law for the last 25 years, but the
propagation delay is in many cases close to the physical
bound. For this reason, in network computation would
be a small fraction of the propagation delay in WANs.
Let us consider the following example: if a typical de-
lay between two nodes 10000km apart would be of 50ms,
increasing this delay to 55ms would be acceptable if ser-
vices better than best effort would be provided. Tomor-
row’s processors will execute at over 1GHz clock speed
which would make possible the execution of five million
cycles on the routers along the route. Even if this amount
of computation is not enough for certain compression or
encryption tasks, it could certainly improve tasks based
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on routing, caching or congestion control. The challenge
is to design an active node architecture that is scalable
for both forwarding and processing.

There are currently a number of architectures pro-
posed by the active networking groups, and efforts are
under way to standardize both the operating system sup-
port and an encapsulation protocol to allow active proto-
cols to run over “passive” IP networks, such as Internet.
[BCZ98a] classifies the architectures proposed on the
granularity of control, statefullness, and language expres-
sive power. ANTS [WGT98] offers a Turing-complete
machine model at the active router, therefore the possi-
bility for each user to execute any new code. At the other
end of the spectrum, DAN[DP98] only allows the user to
call functions already installed at the node. In terms of
granularity, packets may modify the entire node behav-
ior, like in ANTS, or only the flow to which they belong.
To these criteria, we may add one that is essential for
deployment: accessibility. ANTS allows the injection of
the code from anywhere on the network, while Switch-

ware [Sco98] only allows adding of new functionality by
the local authorities at each node, the user being only
able to make use of the services, and compose those ser-
vices in a controlled manner.

1.1 Roadmap

The rest of the survey is organized as follows: Section 2
presents a number of applications that would benefit of
active solutions, thus motivating the need for research in
the area of active networks. Section 3 explores a num-
ber of technologies that make active networking possible,
or that could improve future active architectures. Sec-
tions 4 presents the main architectures for active nodes
proposed today and their features. Section 5 provides a
comparison between the presented architectures and the
way services may be implemented, deployed and com-
posed, and section 6 summarizes with the conclusions of
the survey.

2 Motivation (Applications and Active Approaches)

Mobile code technologies, such as Java, came to an
widespread use largely due to network related applica-
tions, agents and applets that are used in a compiled
form across platforms. But applets and agents are de-
signed to deploy new functionality only to the edges of
the network, while certain problems, such as congestion
control, or transcoding need meta-information that is
timely available only in-network. Application specific
congestion control is an often used example: applica-
tions that run customized functions in the network can
handle dependencies among application data units, and
can differentiate between the importance of units. Send-
ing an MPEG stream over a passive datagram network
gives no control over what packets are dropped in case of
congestion, while an MPEG specific transcoding method
would drop less important frames, or even frames that

are of no use at all once some previous frame was lost.

There are applications for which performance is eval-
uated in specific metrics instead of usual network metrics,
such as delay or bandwidth. The auction site applica-
tion [WLG98] defines the performance as the number of
successful bids processed per second as opposed to the
total number of bids issued to the server. Stock caching
application [LWG98], allows a finer tuning for both the
promptness in delivery and the recency of a stock quote,
while defining the performance measure in quotes deliv-
ered per second, instead of the usual measure in megabits
per second.

The following table summarizes applications men-
tioned in the active networking literature and the so-
lution adopted in the current Internet.

Application Non-active solution
firewall flow specific filters are installed on edge routers
web proxy application level: Squid, Harvest, manually deployed
scalable auction server requires AS code to be installed in all the routers in a radius around the server
routing around congestion differentiated services, reservations, heuristics in the routers
multicast, reliable multicast MBONE
transcoding media gateways
congestion control end to end policies (TCP)
protocol boosters manually install boosters/deboosters
network management configurability only in the limits allowed by the installed system
WAN cooperative caches application level: Squid, Harvest

2



sensor data merg-
ing/dispatching

application specific, can only be done at edges, or at specialized servers

conjunctive/disjunctive data
streams

processed in servers, or at the edge hosts

custom stock tickers end to end, using agents at both ends
overlay networks XBone, specific bone
Quality of service RSVP, differentiated services
mobile routing mobile IP, snoop TCP
mSMTP, mHTTP, CTCP not possible end to end
Ad hoc Multicast use several unicast links

All these applications, or problems, cannot be solved
efficiently in an end to end manner. The need to cus-
tomize in-network nodes to accommodate the newest ap-
plications materialized in time in various modifications
to the router software, such as firewalls, or, when access
to the node is not possible, in routing performed at appli-
cation level , such as web proxies, transcoding, or overlay
networks. Some of the problems cannot be even solved
in an end to end manner - the most popular examples
here include multicast, mobility and QoS guarantees.

Tomorrow’s internet will see not only an increase in
the total volume of traffic, but also the dominance of the
multimedia traffic. Long distance companies use packet
switching to lower their costs, music is being sold in bi-
nary form on the internet, conferencing over the internet
is becoming increasingly popular - all these longer lived
flows are more likely to benefit from the processing capa-
bilities of the routers, than the shorter lived flows from
email and web browsing we see today.

2.1 Routing, Bridging

The deployment of multicast and reliable multicast has
been long awaited by the Internet community as mul-
tiuser applications and games are becoming more pop-
ular. Active Reliable Multicast [wHLGT98] is a pro-
tocol implemented on top of ANTS that provides reli-
able delivery to all members subscribed to a multicast
group. The issues in reliable multicast are caching of
data, NACK implosion and answering individual repair
requests. ARM handles them in a way that is close to
optimal due to the fact that caches can be placed at the
most appropriate locations in the multicast tree, and re-
pair requests will be handled as close as possible to the
lossy links. ARM uses soft local state in the routers
to keep track of the repair data that is requested often,
and to fuse NACK messages. Advantages of ARM are
that it introduces a small increase in wide-area end to
end latency and that its deployment issues are solved by
the active architecture. Caching at routers may pose a

scalability problem, but that is inherent to the reliable
multicast, not to the active solution.

Active Bridging [ASNS97] is an application based
on Switchware architecture [Sco98], from University of
Pennsylvania, that proves the utility of the active tech-
nology in a local network. A short description of Switch-
ware is presented in section 4.2 in this survey. The active
bridge may be programmed on the fly to become from
a simple buffered repeater, a bridge supporting multi-
ple spanning tree algorithms. This experiment makes a
case for the incremental deployment of network protocols
showing that versions of the spanning tree algorithm may
be updated without shutting down the network. The ap-
proach is also able to validate the newly inserted proto-
cols, and in case of failure, to fall back to the old version
of the protocol.

2.2 Caching

Active nodes allow packets to leave soft state behind, and
sometimes to allocate larger amounts of memory, which
makes the active architecture a good environment to im-
plement applications that require in network caching. An
example is presented in [LG98], where a web caching in-
frastructure is deployed over active nodes to reduce la-
tency for warm documents. The solution addresses the
problems present in hierarchical caches: multiple tran-
sitions between application level and network level (be-
cause routing is performed in the application layer), re-
peated miss processing and large number of hops tra-
versed. The cause for high latency in the hierarchical ap-
proach is that the protocol used to query caches (ICP) is
connectionless and requires require one extra round trip,
and TCP SYN used by HTTP to open the connection
doesn’t contain the URL. The idea for active caching is
that participating active routers keep redirecting point-
ers towards the nearby caches, and as a request goes
on the shortest path to the server, it may be redirected
to a cache that has the URL. Pointers kept in the active
routers are the message digests of the actual URLs. Each
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router reports URL requests to the cache which then in-
stalls a redirection pointer in the router. This solution
also enables a form of load balancing: when busy, a server
enables path-tracing for all its requests for a monitoring
period. All the incoming routes are then collected in a
tree and appropriate documents are sent to the caches
placed at the root of loaded trees.

Self organizing caches [BCZ98b] are another approach
to active caching that uses many small caches instead of
a few large ones. Any cache will have a specific set of
objects that can be cached in it, and sets do not overlap
with one another. The path between the client and the
server is partitioned in chunks of a given radius, so that
an item is cached only once inside a radius. To obtain an
even distribution of objects on the path, a modulus func-
tion function is used. A cache will keep pointers to items
stored in nearby caches, and these pointers are used to
reroute the requests. The scheme is referred to as mod-
ulo caching with lookaround. Simulations have shown
that for a fixed topology, there is a unique value for the
ratio between the memory used for items and the mem-
ory used for pointers, that would give the least latency.
Too large a memory for the lookaround cache makes the
routes longer, and leaves too little space for the actual
objects in the nodes. Not enough pointer memory won’t
give enough strength to the lookaround.

[Joh98] presents a new transport protocol
CTCP(Client side TCP), based on NACKs from the
clients. Active nodes along the route between the client
and the server perform caching for all datagrams. When
NACKs from the clients are received by a node that has a
cached copy, the request can be solved without involving
the server. However, this solution has the disadvantage
that due to the NACK transport style, the server should
maintain the entire copy of the document. “Good” cache
sizes needed for these active routers are up to 200MB -
this value is obtained by multiplying the bandwidth of
the router with the time to detect a loss and retransmit
a packet.

2.3 Congestion control

Congestion is a problem for which an active solution
would be appropriate because some packets are queued,
therefore delayed or even dropped anyway, and therefore,
active processing on these packets won’t incur an extra
processing delay noticeable at the edges of the network.
As the product bandwidth x propagation delay increases,
it becomes harder to deal with congestion in an end to
end manner. This makes a point for the active capabil-
ities in routers that would allow internal nodes to deal
with congestion locally. It is also better for the applica-
tion to control losses, than to leave this to lower levels of

the protocol stack.
[BCZ96a] describes how the congestion is handled by

application specific code injected in the network in order
to obtain better throughput and better network utiliza-
tion for an MPEG video transmission. The scheme uses
a fixed priority between MPEG frames B, P and I (in
this order of importance), and then applies three possi-
ble policies at each node:

• Discard-Other: packets with lower priority are dis-
carded to fit an arriving packet in a full output
queue. Dependencies of the dropped packet are
also dropped

• Discard-Own: all packets in the same frame with a
discarded packet are discarded

• Discard-On-Arrival: when a packet is dropped, all
subsequent dependent packets are dropped

The basic datagram service competes with this model
in terms of performance only if the utility of the data at
the receiver is more fine grained: that is, if the receiver is
able to use any parts of an incompletely received frame.
Another possible advantage for the application control
schemes is that they are able to implement some label-
ing of the packets to indicate permitted manipulation at
the active nodes, which is somehow similar to differenti-
ated services schemes.

In [BCZ96b], an active node model designed specifi-
cally for congestion control is presented. Functions may
be executed on any packet in the protocol stack: on appli-
cation units, transport units, IP datagrams or datagram
fragments(frames). The functions available at each node
are fixed: buffering and rate control, unit-level dropping,
media transformation, multi-stream interaction. Each
capsule carries a list of function addresses, and a list of
labels, specifying data to be used by the functions. Soft
state is accessed by using tags that are aged and even-
tually discarded when not used. Because functions are
fixed, security is not an issue. The active networking ser-
vice here is defined to be best-effort, that is, in the worst
case it should not be worse than the service offered by
the passive network.

2.4 Virtual Networks, Network Manage-
ment

Virtual, or overlay networks are a way to build a logi-
cal network on top of another network for purposes like:
emulation of physical resources, development of new pro-
tocols, reserved services and customized topologies. X-
Bone[TH98] is a system for automated deployment and
management of overlay networks. Examples of overlay
include MBone for multicast IP, 6Bone for IPv6, and
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ABone for active networks. The basic idea of an over-
lay network is to use encapsulation to provide a virtual
infrastructure on top of existing internet. This requires
routing software to be installed at selected sites - this is
a common point with the active networks. X-Bone can
bootstrap and manage active networks, or X-Bone can
work on top of services offered by active networks. How-
ever, active routers, once deployed, would allow a higher
degree of customization, beyond that of deployment of
virtual networks. The main problems X-Bone addresses
are manual configuration of the overlay network, and for
distributed applications, application level routing and re-
source discovery. The X-Bone architecture comprises of
three components:

• overlay managers run at user locations, at the edges
of the network and control the deployment and con-
figuration of the overlay; they are distributed GUI
applications

• resource daemons run at resource locations
(routers) and provide external access to resources;
routers require configuration of addresses for vir-
tual interfaces - when global addresses are used,
the daemons manage the address space

• multicast control protocol used for locating re-
sources

X-Bone operates at IP layer, so resources should have
IP addresses. Addresses may be either local to the over-
lay, which allows richer overlays, but requires additional
routing, or global to the Internet which is easier to con-
figure, but harder to allocate globally. In order to sup-
port X-Bone, hosts should support multiple IP addresses,
links should support tunnels and routers should sup-
port partitioned route tables and multiple forwarding
engines. These requirements are very similar to those
for the NodeOS that has to support several execution
environments for active nodes.

[Yec96] Netscript is a project developed at Columbia
University and aims at managing a virtual active net-
work on top of existing internet. Netscript views the
network as a collection of VNEs (Virtual Network En-
gines) linked by VLs(Virtual Links). An agent is a pro-
gram that can be dynamically dispatched and executed
at at remote system. NetScript language is an object
oriented, data-flow language used to glue together pieces
written in a low level language that optimize the com-
mon paths. In this respect the approach is very similar to

the one adopted in Scout/Joust, with the difference that
in Netscript, programs/devices may be added/removed
on the fly. Code loading is automatic, based on signa-
tures that describe links between modules. Applications
of NetScript include network monitoring, SNMP agents
and custom ATM signaling protocols.

[Van97] describes another possible application in net-
work management that would benefit from an active ar-
chitecture: a method for defense against address spoof-
ing and certain DoS attacks. One of the effective DoS
attacks is SYN-flooding. Its popularity is due to its
simplicity, exploiting the way TCP servers handle pend-
ing connections, and to the fact that effective protection
would require either modification of TCP, or deployment
of firewalls -which is a somehow active solution. TCP
connection are established with a three-way handshake:
the client sends a SYN request to the server, which an-
swers with a SYN-ACK as soon as it can satisfy the re-
quest. The client acknowledges again and the connection
is established at this point. After sending back the SYN-
ACK, the server queues the requests in a queue for pend-
ing connections. The attack consists in sending a large
number of SYN requests and never acknowledging any of
them. The server only discards pending requests after a
period of timeout to allow slower clients to respond. The
attacker may send SYN packets with a spoofed return ad-
dress, so that SYN-ACK never reaches him. The active
solution is to deploy an active agent that will push itself
with one hop closer to the attacker with each new SYN
received. The agent is deployed only when the number
of pending connections is high.

Smart Packets [SZJ+98] is another project that use
active networking for network management. Their ap-
proach is however more general, defining a virtual ma-
chine for the CISC-like assembly language Spanner, and
a C-like high level language - Sprocket. Programs are
described in Sprocket and then compiled to Spanner
before being sent in the network. The implementa-
tion is oriented towards network management by hav-
ing built-in instructions to access resources on routers,
non-persistent state across packets and imposing the re-
striction that a smart program must not be fragmented,
so it should fit in 1K (one Ethernet frame). Programs
are sent and executed at a remote host and results are
encapsulated with ANEP and send back. Smart packets
are authenticated with cryptographic methods before en-
tering the execution environment of the active node.
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3 Enabling Technologies

From the technologies that enable implementation of ac-
tive networking, code mobility is the most important
one. Due to popularity and uniformity across implemen-
tations Java is used in many implementations. The next
table summarizes the performance estimated for several
bytecode technologies, measured as slowdown from C
code compiled to the native code.

Bytecode Slowdown
Java 1500%
Caml 1000%

Omniware 1.8%-23%
ANDF 3%

Dis (Inferno) ?%

ANDF (Architecture Neutral Distribution Format) is
not actually a bytecode, but a way to stop the compila-
tion before generating the architecture specific code and
use this intermediate code as a method to share binary
distributions across platforms. Optimizations not spe-
cific to the platform are performed on the intermediate
code, which is then linked to produce a portable exe-
cutable. An installer is then used to produce an archi-
tecture specific binary from the distribution binary, ap-
plying machine specific optimizations. In the context of
active networks, ANDF can be used mainly to install dy-
namic libraries and architecture independent code repos-
itories. Installation time, which is actually the last phase
of a normal compilation may be prohibitive for installa-
tion of the code on the fly, as in the case of bytecode.

3.1 Java, JIT, WAT

The most important feature of Java for active network-
ing purposes is bytecode mobility. Java source code is
compiled to a bytecode that is interpreted on the target
machines. Java virtual machine is stack based, which im-
poses a high performance penalty, as shown in the above
table. Various techniques have been developed to over-
come this problem: JIT (just in time compiling) trans-
lates the bytecode to native code when a class is loaded.
Disadvantages of this method are that the speed of re-
sulted code is lower than that of a code compiled directly
to native code, and the extra time used for translation.
WAT (way ahead of time compilation) is a method that
performs off line compilation of code that never changes,
thus having the chance to apply more efficient optimiza-
tions. In an active node where users are allowed to inject
code on the fly, precompilation such as JIT or WAT may
incur high overheads, but there are architectures, such
as Joust, which make use of these methods in a different
manner.

3.2 Scout/Joust

Scout [MP96] is a communication oriented operating sys-
tem which has the path as an explicit abstraction. If we
consider protocols involved in some application repre-
senting nodes in a graph, then paths are flows of data
between two nodes. A certain graph configuration is
compiled into the Scout kernel, but paths are instanti-
ated dynamically by applications. This approach allows
installation of optimized code for frequently used paths,
and such optimizations may expose and exploit non-local
context. For example, the system places data in buffers
that are accessible to all modules along the path, with
one initial copy. Paths may decide to discard unnecessary
work early - e.g. a video frame whose deadline passed.
The more invariants the system knows, the more opti-
mized the path can be, and the more layers a path works
across, the more opportunities are there to optimize.

Joust [HPB+97] is a re-implementation of Java vir-
tual machine on Scout to add support for low level fine
grained control over resources. JVM is implemented as
a module that may be part of a Scout path. JVM was
extended with path specific routines - Java applications
are able to move data between modules, and to create
paths. Paths that span the JVM module are scheduled
by a priority scheduler so that JVM does not interfere
with real-time paths. Joust supports WAT(way ahead of
time) compilation of classes that are not changed (AWT)
and JIT for injected code. This solution shows that Java
is good to assemble services in an active node, instead of
implementing an entire service or processing capsules.

3.3 Omniware

Virtual machines are not all of them slow, and for now,
there are not many other ways to provide code mobility.
Omniware [Col96] is a RISC based virtual machine with
some CISC features that provides performance close to
the native code. Mobility of code is achieved by compila-
tion to the virtual machine OmniVM bytecode, which is
then loaded by OmniRun - the dynamic translator. Om-
niRun has the role to translate the high level features of
OmniVM in sequences optimized for particular architec-
tures. OmniVM supports a segmented virtual address
space, and uses software fault isolation - the host has
complete control over the memory usage behavior of a
module. The slowdown compared with the native code
running on the same RISC machine ranges between 1.8%
and 23%. The high performance of OmniVM, as com-
pared with other bytecodes is due to the design of the
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virtual architecture, which is basically an intersection be-
tween current popular RISC architectures, thus allowing
fast translation, with some CISC instructions, to allow
the dynamic translator to use machine specific optimiza-
tions.

3.4 Proof-Carrying Code

It is clear that in an active environment, where users
across the network share not only routers’ bandwidth,
but also CPU and memory, a method to control global
resource consumption is necessary. Also, if users are
allowed to install code on the fly in the active node,
such code must abide by some restrictions imposed by
the execution environment at the node. Proof Carrying
Code(PCC)[Nec97] is a validation method where the un-
trusted producer of the code produces a safety proof that
attests the adherence to a previously established policy.
The consumer can then easily and quickly validate the
proof, once, and possibly off-line. The consumer speci-
fies safety rules and interface. Safety rules describe all
authorized operations, their preconditions and the inter-
face describes calling conventions and invariants. Type
invariants are established for each loop, or for each des-
tination of a backward jump. A function is given with
the type signature (one precondition and one postcondi-
tion) and with the invariants annotated. The verification
computes a predicate for each instruction, in one pass.
PCC basically extends ML’s compile time type check-
ing to assembly language and defines safety in terms of
types. Readable memory and writable memory are also
defined as types. The method makes some hard guaran-
tees: any program with a valid verification condition will
reference only memory locations that are defined by the
typing rules.

Some drawbacks are that the proof is obtained with a
theorem prover, based on depth first search, which is not
scalable for large programs. Also, there is no way to do
bounds checking without runtime checks, but PCC may
work for restricted cases. It may be possible to make use
of this techniques when verifying dynamically injected
code, because the verification can be done in linear time,
and a restricted model may work well enough to cover
many applications.

3.5 Hardware Architectures

In order to prove the viability of the active network-
ing concept, it is necessary to achieve active routing at
speeds comparable to passive routing. The problem here
is to have scalability not only for the bandwidth offered
by a router, but also for the processing and operating
memory. Towards this goal, some projects attempted to

use hardware architectures that achieve scalability us-
ing the scalability of an ATM backplane. [DP98] uses
an ATM switch fabric that supports rates of 2.4Gbps on
each port, and capsules are executed in ANPE (Active
Networking Processing Element), which are basically line
cards integrating CPU, cache, memory and ATM net-
work access(APIC).

A capsule received on port A is forwarded to C, and
then to D, and its execution will take place in the least
loaded ANPE. APICs support zero copying semantics,
therefore no copying is performed from the network to
the execution environment.

Another project, [PKL98] at Princeton University
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aims at building scalable routers as clusters of tightly
coupled PC systems around a 200Gbps crossbar switch.
Tightly coupled means that the crossbar is connected to
the main bus of each PC. A singe PC can support up to
40 ports, and each interface card is expected to have local
memory and local CPU to support simple processing.

The nodes are based on off-the-shelf CPUs, thus pro-
viding a low cost for scalability. The main processors are
to be used for more complex services, while basic, sim-
pler actions can be performed faster on the line cards,
which are also equipped with local CPU and memory.

4 Active Architectures

4.1 ANTS (Active Network Transport
System)

ANTS [WGT98] is the MIT project that implements a
model that is probably the most representative for active
networking. An active router is enriched with a Java in-
terpreter that may execute any code installed on the fly
from anywhere in the network. All the packets are re-
placed by capsules, which are grouped into code groups,
and protocols. Besides header and payload, each capsule
has a field called protocol identifier, which is the message
digest of the protocol code. This allows protocols to be
allocated in a decentralized manner, and minimizes the
possibility of interferences among protocols.

When a capsule arrives at a node, its code is imme-
diately executed in a protected environment. A general-
ized TTL scheme is used to control the global resources
used by the capsule. Code carried by the capsules makes
calls to the API provided by the active node. The API
includes access to the node environment, capsule manip-
ulation, and access to soft state. If code pertaining to a
certain protocol is not present at the node, it is loaded
dynamically, using a lightweight distribution protocol:

The on-demand scheme increases the startup latency
of the protocol, other possibilities being to preload the
code in advance or to carry the code in each capsule.
On the other hand, it has the advantage of being adap-
tive to network failures and appropriate for short lived

protocols, when the scope is not known in advance.

4.2 Switchware

The second major approach to active networking is the
programmable switch, described in [Sco98]. The injec-
tion of new functionality into the active node is con-
trolled by local node authorities. The extensions are
called switchlets and are basically libraries. Users from
the network are able to evaluate PLAN programs in the
environment provided by the node. PLAN (Program-
ming Language for Active Networks) is a stripped ML
with the following features:

• guaranteed termination, strong typing

• no high order functions

• assignment

• no recursivity or looping constructs

• no type definitions and forward function reference

• dynamic calls to libraries installed by switchlets

Active router infrastructure is a secure environment
that supports the execution of the upper layers - switch-
lets, and PLAN packets. Basic services such as rout-
ing, address resolution, forwarding, and even PLAN in-
terpretation are implemented as switchlets. The entire
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Switchware architecture is based on Caml, both as a de-
velopment language for the extensions, and as a base for
PLAN. Its main advantage is strong static typing, and
compilation to bytecode.

4.3 DAN (Distributed Code Caching for
Active Networks)

Acknowledging problems with efficiency and security
present in other approaches, [DP98] argues that active
networking at gigabit speeds will not be possible in the
near future based on virtual machines, interpreters and
runtime verifications. Here, instead of carrying code,
packets carry pointers to active modules loaded on-the-
fly from trusted servers. “Code” carried by a packet is a
list of functions to be called, and parameters to be passed
to each function. If a node does not have the code for
a function, it temporary suspends the packet and con-
tacts a code server to get the function. Being binary
specific to router architecture, the code is fast. The ap-
proach incurs some delay when deploying the protocol,
but so does ANTS, only here, authentication servers are
involved, which provides some security guarantees. Code
is cached in a local, persistent database on each node.

This scheme will be used in conjunction with the
hardware architecture afore mentioned in 3.5, but per-
formance numbers are not published yet.

4.4 Standardization: NodeOS, ANEP,
ABONE

Currently, efforts are under way to standardize the way
an active router shares its resources among several ac-
tive architectures and the way active packets are en-
capsulated for transport over the internet. Each active
node runs an operating system (NodeOS)[Cal98] and one
or more execution environments (EE). The functional-
ity of the node is divided between the NodeOS and EE:
NodeOS provides the basic services, sharing of the node
resources and support for several concurrent EEs, while
the execution environments implement an actual active
architecture, such as ANTS, or Switchware. Communi-
cation is done through channels, similar to Scout paths in
that they are built from protocol modules. Some chan-
nels are anchored in an execution environment, others
are cut-through, used just to forward packets through
the node. Packet classification is performed by ANEP
(Active Network Encapsulation Protocol), which is also
used for error handling instructions, security vouchers
and fragmentation/reassembly. The primary abstraction
for accounting is the principal. Once principals are au-
thenticated and admitted to the node, they may allocate
threads, memory or channels.

The ABONE [ABO] is an experimental network con-
sisting of 24 nodes from all over the world used to pro-
totype and test new ideas related to Active Networking.
It allows the deployment, configuration and control of
networking software (including current active networking
execution environments prototypes) into the network. It
demultiplexes active network packets encapsulated using
ANEP to multiple EEs located on the same network node
and sharing the same input port.

4.5 Performance Issues

Most active architectures we see today are not focused
on the efficiency, but on extending the functionality. The
primary function of the active network is communica-
tion, not computation, therefore one should not sacrifice
functionality for efficiency. However, a number of appli-
cations, such as protocol boosters [MCS97], transcoding
[AMK98], encryption, and compression will always re-
quire a high amount of CPU resources. Therefore in any
context that involves mobility of code across heteroge-
neous environments, and a high degree of control of the
CPU, efficiency will be an issue. In [DP98], Dan De-
casper makes the argument that in order to route at a
rate of 10Gbps, a computer running at 300Mhz has only
234 cycles to receive, process and forward a packet of
1KB, which completely excludes the possibility of using
virtual machines and interpreters for high-speed active
networking in the near future.

The active bridge implemented over Switchware
achieves a throughput of 16Mbps, compared with the
speed of 76Mbps unbridged, which is low when compared
with a passive bridge. On the positive side, tests per-
formed on a modified ANTS, working with binary linux
code proved that the performance penalty is not inherent
to the active architecture but is in fact due to the byte-
code. It is also known that efficiency and security are
many times opposing goals in the same problem. Execut-
ing each capsule in an isolated environment may be im-
practical performance-wise, but techniques such as PCC
may provide a solution for restricted cases. The measure
of performance is often an application dependent one,
and this is the place where active networking would find
better applicability.
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5 Active Services, Composition of Services

At the opposite end of the spectrum from ANTS, and
full configurability of the node, there are less radical so-
lutions. Active services [AMK98] have the same goals
as active networks, but routing and forwarding are kept
passive, and the “activeness” is at the application layer.
This idea pursues more realistically the practical require-
ments of incremental deployment of such services in to-
day’s Internet in that existing routers do not have to
change, and application defined agents (called servents)
run on clusters of hosts at the edge of the network in-
stead of running on core routers. The use of clusters also
addresses the problem of scalability, which is a difficult
one for routers. This solution is particularly suitable for
intranets and campus sized networks.

Clients may instantiate servents on clusters of hosts
placed at the edge of the network. This respects the in-
ternet philosophy of keeping the complexity at the edges
of the network, but gives the users the possibility to in-
stall customized servents. One example of such servents
are media gateways, which perform video transcoding for
clients with low bandwidth links.

The active networking technology does not simplify

implementation of the new protocols, the designer still
faces the same problems: packet loss, changing routes,
state loss, concurrency, multiple sessions of the same
protocol. One of the main goals is to simplify devel-
opment and deployment of new protocols, most of them
being assembled from basic blocks. Therefore a method
of composition is needed inside the active architecture
to provide users the possibility to remotely combine ex-
isting functionalities. NodeOS should offer standard-
ized composable services to EE implementors, much in
the way any unix offers the same API to applications
[Zeg98]. Composite network services may range from a
choice from a set of options (IPv4 and IPv6) to a Turing
complete programming language(ANTS). While choos-
ing from a set of options does not allow much flexibility,
it can be applied to existing IP. Intermediate solutions
are used by Switchware, where PLAN allows composition
of services offered by switchlets, and by LIANE, an event
based framework, that eases the correctness proof of the
global guarantees of the network behavior. [BCZ97] de-
scribes the slot programming model, in which the active
node has a fixed underlying program, and the injected
code may only replace certain slots. The underlying pro-
gram consists of two other programs: the common packet
processing, and the default slots; injected code may re-
place some of the slots. The underlying program inter-
faces with injected code using well-known variables. A
receptive underlying program satisfies some safety condi-
tions with regard to the variables that are accessed. The
goal is to make statements about the behavior of the net-
work based on the fixed part of each node by constraining
the injected code.

Although each protocol implemented with the active
paradigm is application specific, a lot of functionality is
common among protocols. [KM99] identifies classes of of
active protocols - protocols belonging to the same class
have similar resource needs and make use of similar ac-
tive node functionality. Protocols are classified based on
deployment, common interfaces, node and primitives re-
quired. The following classes have been identified:
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Class What is used for Deployment Primitives/Resources needed
Filtering packet dropping, bandwidth reduction,

compression, layered MPEG
near the rate
mismatch

query bandwidth for all interfaces;
small state management

Combining combine packets from different
streams/same stream, ATM voice cells,
sensor data, caching, multicast

near the
sources

storage, small state management
packet duplication

Routing virtual networks, geographical routing, in-
formation based routing.

everywhere access to interfaces and queue sizes

Transcoding encryption, compression, image conversion endpoints CPU and memory
Security
Management

smart packets execute at various levels of
security

everywhere manage security associations and
privileges

Network
Management

network diagnose, custom snapshots everywhere create/access/modify the state of
the active node; set up frequency
and formats of reports

Supplementary
Services

does not alter the packets, but may use
their contents for decisions: real-time, con-
tent based buffering

everywhere small state management

6 Summary

The paradigm of active networks combines research is-
sues from operating systems, programming languages,
and of course networking. It is part of a larger trend
of software intensive approaches such as active disks and
active operating systems(Spin), which aim at allowing
users to customize functionality and service. The ac-
tive networking approach is technologically sustained by
advances in code mobility and code verification, and con-
ceptually by the fact that network speed is not increasing
as fast as the processor speed.

Introduction of new functionality into the network

most of the time involves changing the routing software,
which is a manual and costly process. The main goal
of active networking is to make routers programmable,
thus enabling the decentralized construction and use of
new protocols. Allowing random users across the net-
work to share resources in a router poses problems with
efficiency, security and scalability. While it is clear that
networks need to be more “active” than they are today,
it is not yet clear what the best balance is between the
degree of control a node should offer, and the scalability
and efficiency that made internet so popular.
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