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Abstract. Documents in the Air is a middleware system that allows
placing and retrieving virtual objects or documents at different indoor
locations without requiring a positioning system. It consists of an
Android application and an intranet or cloud server, and only makes
use of existing WiFi or BLE infrastructure to produce location specific
signatures. We evaluate the performance of the system and study signa-
ture behavior with respect to: WiFi network characteristics, dissimilarity
and real distances, and various collection methods. Using our own mea-
surements, as well as publicly available data from several buildings, we
show that the document retrieval process is accurate under conditions of
signature impairment, signature aging, reduced AP density, and hetero-
geneous devices.

Keywords: WiFi fingerprints· Location centric services · Performance
evaluation.

1 Introduction

One of the main driving forces of the IoT is the desire to connect everything
to the network, and the hope to access and control everyday life’s processes.
With cluttered environments in homes, and institutions, one of the challenges
is the management of the Internet connected objects. Physical object databases
come with significant challenges in management of devices, topologies, inter-
operation, security, privacy, portability, and context awareness. The concept of
context is central for pervasive computing and IoT, so that ongoing research still
requires extensive surveying effort and building of taxonomies [33, 6, 15, 32, 28,
18]. Context is heavily overloaded concept, and while position is certainly a con-
text, obtaining it, especially indoors requires nontrivial effort. Indoor location

⋆Work supported in part by the Romanian National Authority for Scientific Re-
search and Innovation, UEFISCDI project PN-III-P2-2.1-PED-2019-5413

1



will no doubt play an important role in the quest for context awareness, and re-
search in locating and tracking devices, which has ramped up significantly in the
last decade [16, 23, 21, 20], has shown that obtaining indoor location is costly in
several ways: necessary infrastructure (specialized measurement hardware), low
accuracy (WiFi, BLE), effort (training and maintaining location databases), bat-
tery consumption (GPS, WiFi, 4G methods), erosion of privacy (Google track-
ing).

Documents in the Air(AirDocs) is a recently proposed[26] middleware sys-
tem that avoids the use of Cartesian location, relying instead on context specific
signatures to allow placing and retrieving virtual documents at different indoor
locations. It relies on WiFi/Bluetooth infrastructure existing in most homes and
institutions, requiring a single additional server visible in the intranet, and an
application that can be installed on any mobile device. Collecting this informa-
tion in a signature of the context, which includes the WiFi fingerprint and
other context specific information, enables retrieval of information based on sig-
natures. AirDocs enables many applications that involve natural placing and
retrieving of documents at locations, but without actually requiring a location
system. In this article, we experiment with a dissimilarity measure as a proxy for
Euclidean distance, that allows for several operations in signal space to enable
placing and retrieving virtual objects using only context derived from wireless
fingerprints. We benchmark the behavior of the signatures in signal space, and
Cartesian locations are never used in the operation of the system, except for
reporting purposes. The contributions of the papers are:

– implement a proof of concept for the middleware, which includes a simple
Android application that places and retrieves signatures, and a server that
implements searches in signature space.

– propose mapping between Euclidean distance and signature dissimilarity
– benchmark the main part of signatures, namely the WiFi fingerprints, with

respect to creation, classification, collsion behavior, aging
– show that object retrieval is robust with respect to: infrastructure density,

time variation, methods of fingerprint collection, and device variability.

2 System Architecture

The AirDocs architecture is shown in Figure 1: the middleware provides an API
for scanning for Wi-Fi APs, cellular networks, Bluetooth Low Energy (BLE)
devices, GPS information, and sound, in order to build signatures. Also, it in-
cludes methods for sending documents to the server along with the associated
signature, and for retrieving documents from the server for a recently collected
signature. This middleware can then be used by actual applications in order to
store and retrieve documents depending on their specific.

The server is responsible with storing documents and their associated signa-
tures, and also with identifying the appropriate document for a certain signature.
It does this by comparing the collected signature with other signatures stored
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Fig. 1: AirDocs architecture: the middleware module on the mobile collects signa-
tures from the environment. Th server indexes document databases and answers
queries based on signatures.

in the database, by using a (dis)similarity function. The most similar signa-
ture is identified and the associated document is retrieved and displayed in the
application.

The unique rich signatures obtained can then be used to manage a document
collection without mapping them to geographical locations, but in fact obtaining
an association between a document and its location in the building, but not
physical position. The data-structure obtained provides many functionalities of
a location indexed database. The middleware will offer three main primitives to
the applications:

– S = CreateSgn() collects a location specific signature from the phone sen-
sors(WiFi, BLE, 4G, sound, etc) and creates a multidimensional signature
that is unique from any other location signature in the building;

– Put(S, document) stores a document on the server associated with the sig-
nature S; The signature is created by a phone, but the indexing of the
signatures and the document storage happen on a server in the intranet (or
Internet).

– Get(S) - a phone harvests its current signature, and asks the server for a list
of documents that have “close” signatures, meaning documents that have
been stored at nearby locations. The server searches in the signature
space, and real geographical coordinates are never needed.

On the server, documents are indexed by their signatures, based on their
similarities between them. For a given signature query, the server may: 1. retrieve
the document with the lowest dissimilarity with the query, or 2. retrieve all
documents with dissimilarities below a threshold. Since real physical positions
are not known, the database of signatures on the server needs to be organized
using clustering and labeling methods.



2.1 Usage scenarios

The system is akin to augmented reality with the users having the illusion of the
virtual objects being spread in the physical environment, visible only at certain
locations. Leaving an object or a document “in the air” allows for a natural way
to use it as a virtual wireless post-it for museums explanations, navigation in
complex buildings like universities, airports and malls, advertising, lab door an-
nouncements, restaurant menus, office pin-boards, refrigerator post-its, general
reminders, and notices around the house and office. Many of these applications
would usually require location, and a building-wide indoor coordinate system,
but if the AirDocs service is available, the functionality of placing and retrieving
documents can be used right away requiring only the installation of the Android
application.

Since the WiFi coverage is often associated with administrative control of the
physical space, the placement of the document server may be in the intranet.
In this case, the server can be accessible on a standard port once the mobile
joins the building WiFi, as any other service that runs inside a home or insti-
tution. Applications using the AirDocs API would detect local servers using a
name discovery (e.g. DNS-SD, zeroconf, or UPnP) and interact with them in an
application specific fashion.

As we will show in section 4.1, the resolution of the system is currently
around 2 m1. This allows for placing documents at higher density, but at query
time they will be reported as being in the same place. As the performance of
the system will improve by enriching signatures(Section 6.1, more applications
would become possible. In a shopping mall for example, signatures are based
on all visible and fixed WiFi infrastructure, and the documents are placed for
announcement or for advertisement purposes. The system would be read-only
for shoppers, and a document could contain a floor map, a sale, a coupon, or
any other digital object that could be useful to the shoppers. A museum would
have a similar setup in that documents placing and contents are curated by
the institutions and the visitors would only read them when the appropriate
locations. An university, on the other hand, may allow limited posting by the
students in certain areas, or for a maximum document size, or limited lifetime
imposed by weekly cleanups. Conferences could place maps, programs, and other
pointers at hotel entrances and in appropriate presentation rooms.

Full-blown applications based on this API will have to consider actual in-
stitution specific virtual object types (pdf, gif, URLs, multimedia), document
policies (their maximum size and life length), security (who can create docu-
ments), visibility (certain user-groups might see different sets of documents),
scalability, and an appropriate GUI (simple browser refresh, or full augmented
reality) to facilitate production and consumption of spatial data that are all
application specific. If AirDocs is run in the intranet on a standardized port,
a common smartphone app would cover many usage cases, and the user would

1 limited by the Android WiFi throttling procedure taking about 3-4 seconds for a
full scan of both 2.4GHz and 5GHz WiFi bands



not need to install a new one when attending a conference, visiting an exhibit,
or browsing a brick and mortar store.

The AirDocs API can be used even without ownership of the physical space
or of the WiFi infrastructure, with a server in the cloud, as long as the collected
signatures are stable (see Section 6, whitelists). Since connectivity to the visible
APs is not needed, signatures can be collected anywhere and stored on an appli-
cation specific, or group specific private server that allows Put-ting and Get-ting
documents to create a private document collection embedded in any WiFi rich
physical space.

3 Dissimilarity of signatures

In this section, we explore the behavior of signatures collected from the WiFi
infrastructure, called fingerprints, which are most readily available, and present
in ever increasing AP (access point) densities. Since the system does not use any
Cartesian location and distances, we first look at the mapping between signature
dissimilarity and Cartesian distance.

As far as indoor positioning based on radio fingerprints is concerned, accu-
racy is predictable [3], and can be quantified in terms of meters per dBm of
RSSI (received signal strength indicator) measurement accuracy. The organiz-
ers of several editions of Microsoft Indoor Location Competition mention that
for the infrastructure-free mode, the expected indoor positioning accuracy was
around 2 m in most years, but was as high as 4 m in tough environments [16].
Some improvements implemented for these wining methods could be employed
by AirDocs, but not the ones that require extensive setup, training, and calibra-
tion. We next propose a dissimilarity measure that employs methods that have
been validated by other researchers, and exhibit a monotonic behavior with real
distance.

3.1 Dissimilarity measure

Generally, positioning using fingerprints uses some function of distance in signal
space, with Euclidean used in the RADAR paper[1], and many others tested
in the literature. Caso et al. [4] tests Minkowski, cosine, Pearson correlation,
and Shepard, finding that Euclidean and Pearson correlation provide the best
results. In other studies, Mahalanobis is found to have the best performance,
but for our setup it cannot be applied, since Android only gives one RSSI per
3s reading, therefore a covariation matrix between RSSI distributions of differ-
ent APs cannot be obtained without extensive waiting. Torres-Sospedra et al.
[34] explore many others distances ad dissimilarities used in the literature, and
found Sørensen (BrayCurtis coefficient) to perform best. In addition, we adopted
some other improvements proposed in [34]: zero-to-one normalized representa-
tion (equation 1) of a RSSI value xi in dBm:

Xi = normalized(xi) = α(1− xi

min
)e (1)



We chose the scale value α so that the range of xi observed values -99 dBm .. -
30 dBm get mapped to Xi in the interval [0,1]. The purpose of this normalization
is double: it maps negative power reading in dBm to positive values that are
needed by some similarity measures, but also discounts more differences between
low power readings. The latter means that differences in stronger signals are
penalized, for example a -90 dBm to -85 dBm difference is less important than a
-40 dBm to -35 dBm difference, as RSSI readings are known to be much noisier
at low power values.

The Bray-Curtis dissimilarity (Sørensen distance) relies on APs common be-
tween the two fingerprints:

BCurtis(X,Y ) =

∑c
i=1 |Xi − Yi|∑c
i=1 (Xi + Yi)

(2)

Most dissimilarity measures consider only common APs between two signa-
tures, but as stated by Beder and Klepal [2], non common APs are a critical
factor in reducing false similarities.
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Fig. 2: Braycurtis dissimilarity vs real
distance for all pairs of points on a
square floor with 46 signatures.
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Fig. 3: Braycurtis dissimilarity (equa-
tion (2)) when a high percentage of non
common APs received at different pow-
ers. Low power APs have sporadic re-
ception, but have low effect on dissimi-
alrity.

Device variability Another issue to be considered when evaluating dissimilar-
ity is the harvesting of signatures with different devices, which might have dif-
ferent receiving characteristics. These are caused by different antenna patterns,
and different RF chains. In order to mitigate the RSSI differences introduced by
device heterogeneity, we use robust fingerprints that include differences of RSSIs
corresponding to pairs of APs from the same WiFi fingerprint. The method is



derived from [7] and [17], and has been evaluated in [9] to be effective in dealing
with device heterogeneity.

For a WiFi fingerprint, only for common APs X = {Xi}, the device invariant
fingerprint is represented by differentiating power for consecutive APs:

Xinvariant = {(X1 −X2), (X2 −X3), ..., (Xn−1 −Xn), (Xn −X1)} (3)

In AirDocs we use Bray-Curtis based dissimilarity function with all the men-
tioned features, and compare its monotonicity against real distance on data col-
lected in an eight-story building, dataset 1a (described in Section 4.1). In Figure
2, we consider all pairs of points on a floor that are 15 m or closer. We can
see that dissimilarity increases linearly with actual distance, and beyond the
13 m mark, which is the length of a corridor, we begin to see values of 1.0 in
dissimilarity, and a higher deviation due to more wall attenuation.

For APs missing between the two signatures, we consider them visible at
-100dBm (-99dBm is the minimum observed value in datasets in this article),
so that they contribute to the dissimilarity. To quantify the contribution of non
common APs, we increase the percentage of non common APs between compared
signatures to understand how they affect dissimilarity. As will be detailed later
in the paper (Section 4.1), these are typical ratios of non common APs between
spots that can be meters away from each other, and a dissimilarity of 0.25 will
be later used as a threshold for selecting nearby documents. In Figure 3, we see
that weak APs that are not common do not affect the dissimilarity much, as it is
common for mobile phones not to reliably pick them. In contrast, strong missing
APs are a clear indicator of a faraway spot. In addition to that, we simply set
the dissimilarity to 1.0 if the fraction of common APs is lower than a threshold
(25%).

4 Dissimilarity microbenchmarks

We evaluate the behaviour of the dissimilarity function and of the retrieval pro-
cess on three different setups: one that we produced in our building, which will
be made available as supporting material [27], and two which are publicly avail-
able [19], and [22]. In all the following sections, we use the real position of the
documents only for reporting purposes, that is, to quantify the distance at which
documents would be found, but the real position is not used in the cali-
bration of the system, indexing of the database, or anywhere in the
search and retrieval process, as it will not be available or necessary for the
users of the system.

4.1 Building 1 results

Datasets 1a and 1b were collected in our own office building with methodologies
described in section 3. The documents are spread across a square corridor (Figure
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Fig. 4: Dataset 1a contains 8
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Fig. 5: Searching the document with a different
device at the same point, or at points closeby. In-
creasing the dissimilarity threshold guarantees
that the document is found even if searching
some distance from it.

4) consisting of true position and signature. For dataset 1a, eight floors were
collected with collection points 2 steps apart (approximately 1.2m), holding two
Android devices (Google Pixel 4A and Redmi Note 8) at waist level close to the
body. For each collection point 4 directions were collected, rotating 90o after each
scan. Dataset 1b contains the ground floor, sampled along the same trajectory,
but at one step (0.6m) resolution, and with the devices held at face level, away
from the body. The building has an infrastructure WiFi, and a measurement
point receives a median of 32 APs (minimum 20 APs, 95% = 49 APs). The
collection methodology is described in more detail in section 6.

We use documents placed in the environment (Figure 4) to validate the
searching process in several ways. First we search with a different device at
the same physical point where the document was placed, and by using a large
enough threshold we can guarantee that the document is found with high prob-
ability. In Figure 5 we see that using a dissimilarity threshold of 0.22 guarantees
that the document would be found in 99.5% of the cases. When searching at
a distance from where the document was placed, an increasingly higher value
of the threshold is necessary. As shown in Figure 5, for dataset 1b, a search
tolerance of 0-1.8 m would require a dissimilarity threshold of 0.22-0.3.

An alternate way of looking at the problem is to compute for each query
signature the distance to the closest document in the database. This can be zero
when a document collected with the other device is found at that same location,
or non-zero for nearby documents. In Figure 6, we see that in 72% of the cases
the closest document (in signal space) returned is the one taken at the query
spot, and in the rest of the cases is a spot 0.6 m away. The closer the response
document, the more discriminate the signature is, and fewer faraway documents
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Fig. 7: Document queries based
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will be returned. For the rest of the experiments in the paper, we will use this
measure of distance to closest document reported as a performance for all the
datasets we explore.

As shown in Figure 2, the relation between dissimilarity and real distance
will make any decision based on a threshold in signal space to return several
documents that have similar signatures, but are far from the query point. In
Figure 7, increasing the dissimilarity threshold returns, in addition to the desired
document, other documents that have similar signatures. Whether these are
considered as false positives depends on the actual application AirDocs is used
for.

Simulated impairments Knowing that devices used by the system may vary
in their antenna characteristics, we stress test the searching process to better
understand higher diversity in devices.

We add Gaussian N (µ, σ) noise to the database taken with the Pixel smart-
phone. The Redmi device queries for the closest point in the signal space from the
database. As mentioned in section 6, Table 19, the Pixel device already receives
a N (−4.4dBm, 3.5dBm) lower power. To explore a wider range of impairments,
we add noise with µ=-5 dBm, and σ increased from 1 dBm to 8 dBm, and com-
pute through cross-validation the all the obtained distances. In Figure 8, we plot
the 50%, 90% and 99% percentiles of the CDF for the obtained closest distances.
The system degrades gracefully, even for a standard deviation of 8 dBm, with
the resulted median distance to the closest point increasing from 0.6 m to 0.9
m.

Then, we alter the database with a fixed deviation of σ = 3dBm, and a
varying offset µ = -1 dBm .. -10 dBm. Due to the differentiating feature of



the proposed dissimilarity used (section 3.1), the median error obtained remains
constant at 0.6m, and the 95% at 1.8 m throughout the entire interval studied.
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Fig. 9: Distance to closest point obtained when
removing a fraction of APs (dataset 1b).

Another issue to explore is
AP density, which has been
increasing in recent years,
even if sometimes the APs are
virtual, being emitted from
the same physical card. We
eliminate fractions of APs
from the query(Redmi) before
querying the database(Pixel),
and summarize the results in
Figure 9. The performance
degrades gracefully and main-
tains performance even with
one third of the existing APs.
Please see the Section 6 for
further discussion about AP
density.

4.2 Building 2 results

We use a dataset published by
Indoor Location Competition, 2020 edition [22]. It It contains data from two
shopping mall buildings, that have been sampled at walking speed with the col-
lector facing the necessary direction to complete the desired path. The collector
stopped and marked certain points in the measurement trips, but WiFi and BLE
beacon collection went on continuously. We post-processed the data to interpo-
late linearly the position of the collector at the time of each WiFi scan based on
the timestamped positions logged during collection. The first floor of the first
site is shown in Figure 10, together with the resulted sampled points.
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Fig. 10: Dataset 2 floor topology
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The first site has a high density of APs with a total of 4053 unique MAC
addresses for the entire building, with 1452-2524 APs per floor, and 130-401 APs
collected on average for each point. Despite this density, collecting at high speed
and with the collector facing only one direction, yields a closest point that is
higher than for datasets 1a and 1b (Figure 11). Dissimilarities of these closest
points appear invariant to density. AirDocs is usable even with these relaxed col-
lection methods, but the operating circle around the user would be larger,which
could be appropriate for malls, with larger spaces and higher mobility patterns.
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On the server side, the implication of high
density and variability is that q = 9 offers
99% retrieval rate and q = 20 is necessary to
achieve 100% document retrieval rate, where
we consider documents all the WiFi sampled
points. This result shows that high AP density
is not always a blessing, since variability in
the strongest AP received increases the search
time on the server. This situation can be par-
tially mitigated by identification and merging
of virtual APs.

4.3 Building 3 results

The third dataset used is based on data from
the UJI repository at [19], from which we se-
lect one particular floor that has been mea-
sured repeatedly over a period of almost one
year. The topology is depicted in Figure 12
and consists of 24 points visited sequentially
by the collector, and at the end returning in

the opposite sense over the same points after a time of about 10 minutes. The ref-



erence points have rather high distances between them 1.8m, respectively 4.2m
on each axis, but at each location 6 samples were collected with Android mobile
devices. We post-processed the data so we merged the two readings 10 minutes
apart, assuming that the collectors probably faced opposite direction during the
return trip, and also averaged all the collected values resulting in one signal
strength per AP per point.

Given that the dataset has a lower spatial resolution, we only used points
3-20 as queries for cross-validation since corner points only have one reasonable
option to be returned, besides the point itself. We first verify how real distance
and dissimilarity are linked for this topology by measuring dissimilarity between
points taken in the same session (Figure 13a, blue dots and line fit). This par-
tially resembles the behavior for dataset 1 (Figure 2), with the collection lattice
binning of possible distances. Then for each collection point, we computed all
dissimilarities to its past and future measurements, and collected all the values
in the gray boxplot. The boxplot is manually placed horizontally based on its
median value and the line fit to give an estimation of the error resulted from
fingerprint aging.
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Fig. 13: (a)Blue: dissimilarity vs distance for measurements taken at the same
time; Boxplot: dissimilarities between scans of the same point at different times,
cross validated across all times and all sets. (b) UJI 3rd floor number of APs per
point in time.

To understand better the behavior of fingerprints in time, we look at a time-
line of the number of APs available for a point at different moments. In Figure
13b, each point represents a measurement set, and the actual number of APs
is averaged across all 24 points, with the standard deviation indicated at each
point. As the collecting device does not pick up all APs at all times, even if the
instantaneous number of APs is relatively stable, the total number of APs that
are historically available is substantially higher. This mismatch behaves like an
aging effect, but can be countered either by taking more measurements, using
more collector orientations, or using a different stances for the device.



To evaluate how retrieving of documents works with old databases, we cross
validate fingerprints against entire database of 24 points taken at future or past
time, and compute the closest point returned. In Figure 14, we see that in 67%
of the cases, the same location would result, and the rest distributed between
the two available candidates, at 1.8m and 4.2m. The dissimilarities associated to
these closest points are higher than the ones resulted in dataset 1, due to both
fingerprint aging, and the actual spatial resolution of the sample points.

5 App and server implementation
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The AirDocs middleware con-
sists of an Android module
that collects signatures, and a
server that stores documents
indexed by signatures and re-
sponds to queries based on
signatures.

The Android module per-
forms WiFi scans every 3 sec-
onds, which is a limitation im-
posed by the operating sys-
tem, as mentioned by other
works as well [14]. The oper-
ating system provides a list of
APs and the associated RSSI
in dBm, which constitutes the
WiFi fingerprint, the main
part of the context signature.
The module also scans cellu-
lar networks, BLE devices, obtains the GPS location when possible and records
the background sound. All this is performed in the 3 seconds frame and all
information is included in the signature.

From Android version 8, an additional throttling mechanism was included
in the operating system, in order to limit the frequency of scans and reduce
power consumption. In Android 8, a background application can only perform
one scan in 30 minutes. However, this is mitigated by using a foreground service,
which is not limited by the throttling mechanism. In Android 9, each foreground
application can scan 4 times in 2 minutes. This problem can not be circumvented
and it limits the scanning capabilities of AirDocs middleware on this version of
Android. From Android 10 and above, the throttling mechanism can be disabled
from Settings, so it does not affect the scanning procedure of our middleware.

The AirDocs server communicates with the AirDocs smartphone module
and is responsible for two scenarios. First, it receives a new document together
with an associated signature and stores them in a database associated with the
building, institution, or group. Second, it responds to searches based on signa-



tures, identifying documents with low dissimilarities. The most similar signatures
and their associated documents are sent to the mobile and then displayed in the
application.

With a naive linear database implementation, insertions would take O(1),
and and searches O(n), where n is the number of documents stored on the
server. AirDocs stores a spatial database, in the sense that documents are tied
to location, but the actual locations of documents is not known. Therefore, most
of the methods to index spatial information, such as M -trees and R*trees, or
others used optimize databases of position labeled fingerprints are not applicable.
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Fig. 15: Diameter of Voronoi-like re-
gions. Multi label based searching will
only query documents inside a diameter
of 11m(median) for dataset 1b.

However, dissimilarities between
documents impose some structure in
the signal space. A natural spatial
clusterization should produce hierar-
chical structure into buildings, floors,
rooms. This would allow for search-
ing in a tree like structure that uses
spatial relationships of inclusion and
adjacency.

We use a multi-labeling system,
where clusters are headed by the
strongest AP observed, which imposes
locality to the search process. When
receiving a document, the server as-
signs q labels, where q is the number of
the strongest APs visible in the WiFi
fingerprint. For every query, the server
then searches only in q lists associated
with the strongest APs. Due to insta-
bilities of indoor WiFi, the strongest AP might not always be the same and the
question is how to determine the minimum value of q required to retrieve any
document? If we had perfectly regular signal propagation, and q = 1, APs in
a plane would divide space among them in Voronoi regions. The strongest AP
would be the Voronoi seeds, and the documents points in the Voronoi cells, based
on their strongest RSSI value. In reality, due to irregular indoor propagation,
these regions are not Voronoi shaped, and do not have definite borders, but are
are partially overlapping. The shape and the amount of overlap depend on the
building, AP density, and the collection method.

The search complexity of this data-structure is therefore O(q∗nV ), where nV

is the number of documents inside a Voronoi region. The areas of Voronoi regions
depend on the density of APs (as Voronoi vertices), but because of varying RSSI
values for the strongest APs, the size of the region will be larger in practice.
This search process is trivial to parallelize since a fingerprint can be searched in
parallel in each of the q lists. In section 4.1 we will estimate typical values for q,
and for the size of the regions.



For dataset 1b, we now characterize the data structures necessary on the
server, given that they are a function of AP density and of indoor propagation
specifics. As detailed in Section 5, searches on the server are performed in q lists
of documents, corresponding the q strongest APs for a fingerprint. We tested
increasing values of q to determine the minimum value that allows retrieval of
all documents. We considered all 85 measured points in this dataset as potential
documents, since the resolution is of 0.6m. If for q = 1 the associated region is
akin to a Voronoi region, for increasing q, this region is enlarged, and we measure
the size of the region by measuring the longest distance between two points in
such a region, calling it a diameter. In Figure 15 we plot diameters for values
of q = 1..4. For q = 4 all documents are retrieved successfully for dataset 1b,
querying regions 11m wide on average.

6 Discussion

In previous sections we validated the fact that WiFi signatures can discriminate
between close-by points in a variety of operating conditions, but there are still
a number of open questions remaining:
Tunables: while the target is for the system to work out of the box for both

users and sysadmins, there are still a few values that need to be calibrated: The
dissimilarity threshold that governs the area around the user is invariant on the
density of APs but the actual values that correspond to a given radius in meters
tend to be different depending on the collection density. For the server part,
the q value that governs the efficiency of the document search depends on AP
density and on collection method (q = 4 for dataset 1, and q = 20 for dataset 2)
AP density affects the performance of the system in more than one way: on

one hand many APs means more ways to discriminate between close locations, on
the other hand unstable AP picked up by Android scanning introduces additional
noise in the dissimilarity. More study is needed to understand whether certain
APs contribute positively or negatively to the signatures.
Whitelists: in many setups there will be temporary APs, or APs that change

location. If these are a small fraction of the total, their effect will not be vis-
ible, as shown in section 4.1. However, for low AP density it is indicated that
the system only use APs in a whitelist with MAC addresses that belong to the
infrastructure. Also, most modern APs create virtual SSIDs, so the same phys-
ical card would broadcast under MAC addresses differing by one byte (Cisco),
therefore a whitelist would be beneficial in unifying these readings. For search-
ing on the server q value is also affected by virtual APs since the physically
strongest AP might appear with several MACs, thus artificially increasing the
search complexity.
Better harvesting: We target an app that is usable on most Android phones,

and decided to rely on a default scanning procedure that takes 3-4 seconds, only
getting one RSSI reading per AP. But using monitor mode on a laptop would
allow receiving 10 beacons/second from most APs, which could allow using the
entire sampled distribution of received power, enabling richer signatures and



better dissimilarity measures (Mahalanobis). Unfortunately, the use of laptops
would decrease the accessibility of the project, but could be used for anchor
documents or other high quality signatures.

Bad spots are those where document resolution is weaker, the WiFi fingerprint
is not discriminate enough, or measurement is insufficient for retrieval of the doc-
ument within a reasonable radius. More study is needed on how to identify these
situations when needed, and either alert the user to take extra measurements,
or prompt the sysadmin to improve the density of APs (physical, not virtual).

Curating documents: since documents are not placed on a map, a method to
manage document collections by the server administration is needed. The proxy
of distance used provides good clustering properties, in that documents beyond
a certain distance, on different floors, or not having enough common APs have
their dissimilarity set to 1. This allows for some organization of documents on
buildings and floors, but management of documents in signal space is needed to
perform periodic cleanup (because of institution policy for example), retrieving
of lost/non-accessible documents, refreshing of fingerprints with changes in WiFi
infrastructure, or addition of maps if they are available.

Signature collection methods Since mobile phones have downsized anten-
nas, the collector’s body orientation with respect to the building, and the relative
position of the phone with respect to the collector are factors affecting the sam-
pling of the signal strength. We explore both aspects of collecting, by having
the collector gather one sample in four consecutive directions, 90 degrees apart.
The collector holds the phone either near to the body, at hip level, or at the face
level, arm length away from the body. Data is collected simultaneously with two
different phones - Google Pixel 4A, and Redmi Note 8, both running Android
10.
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Fig. 16: Maximum power difference be-
tween same AP measured in: 2 direc-
tions at 90◦; 3 directions at -90◦, 0◦,
90◦; all 4 cardinal directions
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Fig. 17: APs gained when harvesting
several samples with collector body ro-
tating around 90◦ .



In Figure 16 we can see that the maximum power difference for the same AP
ranges from 2.5dBm when rotating 90◦, 7dBm when rotating 180◦, and 9dBm
when considering all 4 directions. Boxplots2 represent distribution of results
gathered across spots and directions in the entire building (dataset 1a, described
in Section 4.1). For comparison, Beder and Klepal [3] mention 2 m (best case)
to 15 m (worst case) of positioning error per dBm RSSI measurement accuracy.

all 4 dir dir 0 dir 0,2 dir 1,3 dir 0,1 dir 02 rand rand 2
Directions considered for both query(Pixel) and database(Redmi)
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Fig. 18: all 4 dir: average of four samples mea-
sured in 4 directions 90o apart; dir 0: the direc-
tion along the walk; dir 0,2: experimenter uses
direction 0, and opposite 180o; dir 1,3: two ori-
entations sideways, also 180o apart; dir 0,1: two
directions 90o apart; dir 0-2: three directions
sweeping from left to right, 90o apart; rand: one
random direction; rand 2: average of two ran-
dom directions (out of 4 possible). Measuring in
two random directions either 90 or 180 degrees
apart is invariant on actual orientation of sam-
pling and reduces measurement time.

The effect of collecting
data facing different direc-
tions can be seen in Figure
17 as we count the num-
ber of APs that are cumula-
tively collected with 1-4 poses
90◦ apart. When rotating,
Redmi keeps 75% of the APs,
and drops/gains another 25%,
when compared to the num-
ber of APs seen before ro-
tation. For Pixel, the same
figures are 87% and 13% re-
spectively. This statistics are
gathered for all consecutive
90◦ rotations, for all points in
the dataset. By comparing all
same AP readings in all the
spots and in all directions (a
total of 13000 measurements),
we found that the Pixel -
Redmi power difference is -
4.3dBm with a deviation of
3.6dBm (Gaussian shaped).
The interpretation of these
numbers is that Redmi has a
more directional antenna, and
sees more of a power differ-
ence when rotating, but num-
ber of APs gathered is lower since it only gathers in the preferred direction.

To better quantify all these factors, we search for a given fingerprint taken
with Pixel among all fingerprints taken with Redmi, considering the dissimilarity
measure presented in Section 3.1. We cross validate using all the points on the
floor (dataset 1b, described in Section 4.1), and report the real distance to the
fingerprint with the minimum dissimilarity. In Figure 18 boxplots summarize
distances to the closest point in signal space for several combinations of directions
used during collection(Put) and testing(Get). The best case is when we use

2 boxplots in this article indicate middle quartiles (25%-75%), median, and whiskers
at 5% and 95%. Outliers are shown outside the whiskers.



all 4 directions collected, and the worse when selecting a random directions
out of the 4. An acceptable performance is obtained using any two directions,
including random. Since one measurement takes 3s in Android, we conclude that
measuring at least two different angles provides a good balance between the
collection latency and the accuracy of the results. King et al. [11] also reports
that measuring in two directions is enough for positioning purposes.

direc- Pixel Redmi

tions Waist Face Waist Face

Median # of APs

1 41 52 29 38
2 48 60 39 46
4 54 64 45 54

Power difference[dBm]

2 2.0 3.0 3.0 3.0
3 6.0 6.0 7.0 6.0
all 9.0 8.0 10.0 8.0

APs after rotation

com-
mon 64% 87% 64% 82%
gain/
loss 36% 13% 33% 18%

RSS power diff. Pixel-Redmi
Waist Face

mean -4.4 dBm -1.8 dBm
stddev 3.5 dBm 3.8 dBm

Fig. 19: Improvements obtained with signal har-
vesting stance: Collecting high and away from
the body improves: power, number of APs col-
lected, and reduces effect of device variation.

Phone position rela-
tive to the body We col-
lected two datasets: 1a) at
waist level and close to the
body, and 1b) at face level
and arm length away from the
body. In Figure 19, we sum-
marize the findings compar-
ing these two collection meth-
ods. Collecting away from
the body, and at a higher
pose brings several advan-
tages: more APs are gathered
by either phone by 18%-31%;
There is less of a difference
in number of APs gathered as
the effect of rotating about;
Less of a difference in power
gathered as the effect of rotat-
ing about, therefore less vari-
ability; The consistent power
difference between devices is
reduced.

All these factors show that
collecting high and away from
the body is beneficial, as it re-
duces measurement variabil-
ity for the three factors that
affect dissimilarity: absolute
power, number of APs, and
device difference. These rec-
ommendations have an impact on the way the user collects the fingerprint when-
ever documents are placed or queried.



6.1 Future Work

Fig. 20: Location specific signatures built
using signals received to or from the
smartphone.

One method to obtain increased res-
olution for the dissimilarity of the
signatures is to use of additional
sensors besides WiFi. BLE infras-
tructures are not as prevalent as
WiFi, but all the issues explored in
this paper for WiFi apply directly
when beacons are available (datasets
1 and 2 also have BLE information
but their density is not operational).

Figure 20 shows several possi-
ble sources of data to enrich sig-
natures making them more dis-
criminate with respect to location.
4G/5G has a rather low position-
ing accuracy, but is available in all
smartphones, and could be used to speed up the searching structures in the
server. Sound reflections (as used in project EchoTag [36]) are another source
of enriching the signature that does not require deploying of additional infras-
tructure. Basically, any context information that is stable, available, and easily
collectable by the phone can become part of the signature.

Contact tracing [24, 25, 35] has recently seen a surge of interest, and has
similar requirements with our system: no additional infrastructure, and simple
operation with existing smartphones. AirDocs explores the same idea of proxim-
ity based on dissimilarity, and can be used as support for a contact tracing app,
since the 1m-4m proximity detection is within range of current heath advisories.

Finally, as part of future work, we plan to open-source the client app (in
public Application Stores) and the server, as well as publish all the measured
data on Zenodo [27].

7 Related Work

Several systems were proposed to achieve positioning based solely on the existing
wireless infrastructure using propagation properties, but many of them require
extensive training and updating to maintain a positioning service [39, 10]. In con-
trast, AirDocs proposes management of documents in a context aware fashion,
but not linked to geographic locations which are natural contexts. Association
of documents with locations has been explored — web documents are being geo-
tagged and geo-referenced [29], and in the database community there are efforts
to formalize searches for objects distributed in space [37].

Use of fingerprints for positioning has began in 2000 with the seminal paper
by Padmanabhan [1], but has since developed into a rich research area in which
several engineering approaches are possible. For a taxonomy, see [12], which



describes choices of types of measurements, estimation methods, radio maps,
collection methods, types of collectors. Collection effort, also called training, or
war driving, is the main disadvantage for fingerprint based location, and some
researchers have proposed the use of monitors [13] to minimize the training
process. Yang et.al [38] tries to reduce training effort using an informal site survey
by untrained users. Signatures are recorded with gait measurements and mapped
to real space using MDS (multi dimensional scaling) and ground truth points
obtained by GPS or manually. Google uses undisclosed methods to crowdsource
data from all the users, and offers sparsely available indoor positioning, but does
not have a public API, and comes with serious privacy concerns.

The EchoTag project [36] uses the microphone and speaker of the mobile
phone to create a sound signature specific to the location. We plan to explore
this direction with the purpose of creating an even richer signature for AirDocs.

Augmented reality is an emerging technology that “supplements the real
world with virtual (computer-generated) objects that appear to coexist in the
same space as the real world” [5]. [30] mentions projects spawned from MIT
Media Lab’s project sixth sense, that achieves a form of augmented reality by
requiring the user to carry a projector and a camera to recognize hand gestures.
AirDocs is an enabler of augmented reality in the sense that documents are
embedded in physical space, but without requiring positioning, head mounted
displays, or instrumentation of the environment.

Dousse et. al [8] develop a purely fingerprint-based place learning method.
Its core is a density-based clustering algorithm that works directly on the raw
WiFi fingerprints. They also study the behavior of fingerprints with respect to
space and time, but their focus on learning about stationary places by using 60s
sampling, manually labeled sets, and an unspecified spatial resolution of these
places. Also, locations are visited for more than 5 minutes, in contrast with
AirDocs, which aims for a more fluid user experience.

Proximity based on fingerprint comparison has been explored both for the
purpose of privacy implication [31], and contact tracing [35]. AirDocs exploits
more the resolution available in the dissimilarity - distance function, and can be
used as a primitive for both problems.

8 Conclusion

We benchmarked AirDocs, a system that makes use of signatures composed of
stable information about the location, that is easily collectable by smartphones.
Documents are managed spatially, but without the use of a location system,
which usually requires extra infrastructure, training, or crowd-sourcing of mea-
surements. We explore the use of WiFi fingerprints as the main component of a
location dependent signature, and define a measure of dissimilarity that is mostly
monotonic with real distance. We show that typical WiFi deployments enable
reliable retrieval of documents in areas with radius 0.6m - 2m (median values),
and characterize the behavior of dissimilarity with respect to: impairments and



differences between measuring devices, collection methods, density of APs, and
signature aging.
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