
Design of SOCKS Version 6
Vladimir Olteanu, Dragoş Niculescu - University Politehnica of Bucharest

1 INTRODUCTION
Mobile network operators deploy MPTCP [5] on mobile
phones to "bond" LTE and WiFi and offer faster network
speeds. Since there is very little adoption of MPTCP on the
server side, a proxy is needed to terminate the MPTCP con-
nections and communicate with the servers using regular
TCP.

Versions 4 and 5 [3] of the SOCKS protocol were devel-
oped two decades ago and are still in widespread use for
circuit level gateways or as circumvention tools, and enjoy
wide support and usage from various software, such as web
browsers, SSH clients, and proxifiers.
Ensuring proxies give state-of-the-art transport perfor-

mance is key. Indeed, in order to take advantage of the new
features of transport protocols, such as TCP Fast Open (TFO)
[2] or to enjoy better security against potential on-path at-
tackers, Korea Telecom and other users have resorted to us-
ing proxies such as Shadowsocks [1], that use non-standard
protocols and are unreviewed in terms of security.
This document describes our design of SOCKS version

6, now undergoing development at the IETF [4]. The key
improvement is the elimination of extra round trips between
the client and the proxy in most cases. Our design also works
around key problems of both TFO and 0-RTT TLS Session
Resumption [6] by making requests idempotent using a light-
weight mechanism. The protocol is also extensible, allowing
further features to be implemented without breaking back-
ward compatibility.

2 BASIC PROTOCOL
When a client wishes to establish a connection to a server,
it must open a TCP connection to the SOCKS v6 proxy. The
key difference from version 5 is that the client optimistically
sends as much information upfront as possible. The request
contains the server’s IP address (or FQDN) and port, along
with an initial chunk of application-layer data (e.g. an HTTP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5915-3/18/08. . . $15.00
https://doi.org/10.1145/3234200.3234212

GET). If the client and proxy have previously communicated,
it is possible to perform 0-RTT authentication, in which
case the SOCKS request will also carry the authentication
information.
Next, the proxy sends an authentication reply. If the re-

quest did not contain the necessary authentication informa-
tion, the proxy indicates an authentication method that must
proceed. This may trigger a longer authentication sequence
during which future 0-RTT authentications can be set up.

Finally, the proxy connects to the remote server and gen-
erates an operation reply. All further TCP data is relayed
verbatim to and from the server.

In the regular case, when authentication is properly set
up (see Fig. 1(b)), the proxy attempts to connect to the server
immediately after the receipt of the request, thus incurring
no extra delay.
Assuming that the SOCKS v6 proxy is on path, the time

it takes to receive a data response from the server (e. g. an
HTTP OK) is no worse than the one obtained when directly
establishing a TCP connection to the server.

TFO at proxy TFO at server Total RTT

TCP - No 2P + 2S
- Yes P + S

SOCKSv6
No No 2P + 2S
Yes No P + 2S
Yes Yes P + S

SOCKS v6 can outperform TCP when the remote server
does not support TFO. Clients can still use TFO on the client-
proxy leg, thus shaving off one client-proxy RTT. This is
highly advantageous for mobile deployments, where the
latency between the device and the base station can be quite
high.
Further, when running SOCKS v6 over TLS, the timings

remain unchanged if 0-RTT Session Resumption is used.
In contrast, SOCKS v5 requires two data round-trips (or at

least 3, if authentication is used) before application data can
pass through (see Fig. 1(a)), and offers no support for TFO
on the proxy-server leg.

3 IDEMPOTENCE OF REQUESTS
Both TCP Fast Open and 0-RTT TLS Session Resumption
have well-known issues that could lead to replays. Under
rare circumstances, a resent TFO SYN could lead to the es-
tablishment of a duplicate connection at the server. This can
be disastrous if, for example, the server is handling financial
transactions and erroneously performs a transaction twice.
As for TLS, the initial chunk of data sent out by the client

126

https://doi.org/10.1145/3234200.3234212
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3234200.3234212&domain=pdf&date_stamp=2018-08-07

Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary V. Olteanu et al.

Client Proxy

Auth. methods

Method chosen

(Authentication)

Request

Reply

Data

a)

Client Proxy

Request + Data

Auth. reply

Operation reply

b)

Client Proxy Server

SYN + Req.
+ Data

S+A
+ Auth. reply

SYN

S+A

c)

Op. reply

Data

Data

Data

Figure 1: a) SOCKS v5; b) SOCKS v6; c) SOCKS v6 with TFO only between client and proxy

during 0-RTT Session Resumption can be replayed by an
on-path attacker, or even unwittingly by the client itself, if
it is using TFO.

In order to safely use TFO and 0-RTT Session Resumption
on the client-proxy leg, we have implemented a mechanism
whereby SOCKS requests can be made idempotent1. The
proxy will honor an individual request at most once, regard-
less of how many times it has been replayed.
To protect against duplicate SOCKS requests, authenti-

cated clients can request, and then spend, idempotence to-
kens. A token can only be spent on a single SOCKS request.
Tokens are 4-byte unsigned integers in a modular 4-byte

space. Therefore, if x and y are tokens, x is less than y if
0 < (y − x) < 231 in unsigned 32-bit arithmetic.
Proxies grant contiguous ranges of tokens called token

windows. Token windows are defined by their base (the first
token in the range) and size. Windows are shifted (i. e. have
their base increased, while retaining their size) by the proxy.
Well-behaved clients attempt to spend their tokens in

order. This, however, does not guarantee that the requests
will be received or processed in order by the proxy. Requests
can also be dropped by the network.
The proxy tracks the status of the tokens in the window,

always shifting it past spent tokens. To prevent low-order
unspent tokens from stalling the window’s advancement,
they can be forfeited subject to a parameter called the high
water mark. If the highest spent token exceeds the high water
mark, the window is shifted. Increasing this parameter makes
the proxy more tolerant to request reordering.

Our chosen solution has the following properties: a) Light
weight: The memory usage is constant, the proxy performs
only one memory allocation per client, and all operations
are cheap. This mechanism does not open up an avenue for

1TFO is used on the proxy-server leg only if the client explicitly requests it.

DoS by itself. b) Resilient to proxy crashes: Restarting the
proxy would ultimately result in a new token window being
allocated. Since the new window is very unlikely to overlap
with the old one, the odds of honoring an old request are
very low. c) Resilient across time: To successfully replay a
request, an attacker would have to wait until the window
shifts back to the same position (i. e until the client makes 4
billion requests). d) Timely: Token window advertisements
are sent immediately after receiving the request, as part of
the authentication reply. e) Unrestrictive: The only restriction
placed on the client is that it can make a limited number of
requests per client-proxy RTT, which is not an issue if the
window size is large enough. Token expenditure requests
and window advertisements can be received out-of order.

4 PROJECT STATUS AND DEMO
SOCKS v6 is being used for a trial MPTCP deployment on
mobile phones at Orange Romania.
The demo will showcase how mobile phones can use

SOCKS v6 on top of MPTCP to take advantage of the com-
bined bandwidth of the mobile and WiFi interfaces.

We will also be demonstrating a TLS early data replay at-
tack, and how enabling the idempotence mechanism protects
against the attack.

A SOCKS v6 prototype, along with libraries that ease the
development of other apps that use the protocol, can be
found at https://github.com/45G.

Acknowledgements
This work was supported in part by a grant from the Roma-
nian National Authority for Scientific Research and Innova-
tion, UEFISCDI project PN-III-P2-2.1-PED-2016-0756.

127

https://github.com/45G

Design of SOCKS Version 6 Posters-Demos ’18, August 20–25, 2018, Budapest, Hungary

REFERENCES
[1] 2018. Shadowsocks website. (20 May 2018). http://www.shadowsocks.

org
[2] Yuchung Cheng et al. 2014. TCP Fast Open. RFC 7413. (Dec. 2014).

https://doi.org/10.17487/RFC7413
[3] Marcus D. Leech. 1996. SOCKS Protocol Version 5. RFC 1928. (March

1996). https://doi.org/10.17487/RFC1928
[4] Vladimir Olteanu and Dragos, Niculescu. 2018. SOCKS Protocol Version 6.

Internet-Draft draft-olteanu-intarea-socks-6-02. Internet Engineering

Task Force. Work in Progress.
[5] Costin et al. Raiciu. 2012. How Hard Can It Be? Designing and Imple-

menting a Deployable Multipath TCP. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (NSDI’12).
USENIX Association, Berkeley, CA, USA, 29–29.

[6] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. Internet-Draft draft-ietf-tls-tls13-28. Internet Engineering Task
Force. Work in Progress.

128

http://www.shadowsocks.org
http://www.shadowsocks.org
https://doi.org/10.17487/RFC7413
https://doi.org/10.17487/RFC1928

	1 Introduction
	2 Basic protocol
	3 Idempotence of Requests
	4 Project status and demo
	References

