
Superfluidity: a Flexible Functional Architecture 
for 5G Networks 

Giuseppe Bianchi1, Erez Biton2, Nicola Blefari-Melazzi1, Isabel Borges3, Luca Chiaraviglio1, 
Pedro de la Cruz Ramos4, Philip Eardley5, Francisco Fontes3, Michael J. McGrath6, Lionel Natarianni7, 

Dragos Niculescu8, Carlos Parada3, Matei Popovici8, Vincenzo Riccobene6, Stefano Salsano1, 
Bessem Sayadi7, John Thomson9, Christos Tselios10, George Tsolis10 

1. Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy; 2. Nokia Israel, Israel; 3. Altice Labs, 
Portugal; 4. Telcaria Ideas S.L., Spain; 5. BT, UK; 6. Intel Labs Europe, Ireland; 7. Nokia Bell-Labs, France; 8. Universitatea 

Politehnica din Bucuresti (UPB), Bucharest, Romania; 9. OnApp Ltd., United Kingdom; 10. Citrix, Greece 
 

Abstract—We propose the innovative architecture of 
Superfluidity, a Horizon 2020 project, co-funded by the 
European Union. Superfluidity targets 5G networks, by 
addressing key network operator challenges with a multi-
pronged approach, based on the concept of a flexible, 
highly adaptive, superfluid network. Superfluidity 
supports rapid service deployment and migration in a 
heterogeneous network environment, regardless of the 
underlying hardware. The overall proposal offers 
advanced capabilities in terms of service deployment and 
interoperability, while at the same time guaranteeing high 
performance levels end-to-end.  
Keywords—5G networks, SDN, NFV, Mobile Edge 
Computing (MEC), CRAN, future Internet architectures. 

I. INTRODUCTION 
Today’s networks suffer from a variety of shortcomings, 
including a lack of service agility, a lack of implementation 
agility and increasing complexity. The lack of service agility 
prevents us from creating new services in a rapid, flexible and 
tailored fashion. The lack of implementation agility means that 
we have to rely on rigid, cost-ineffective hardware devices 
with long provisioning times. Increasing complexity arises 
from the continuous growth and heterogeneity of network 
traffic, services and hardware technologies. 
Several emerging trends, mainly in the context of 5G networks 
[1][2], are likely to exacerbate these issues: the forthcoming 
explosion of the Internet of Things (IOT) [3], new radio 
techniques such as massive 'multiple input multiple output' 
and beam-forming [4][5], and the desire for more flexible 
business models [6]. 
The architecture being developed by the Superfluidity project 
is focused on alleviating these problems. It has the following 
features: i) Flexibility, via an architectural decomposition of 
network components and network services into elementary, 
reusable primitives, defined in Superfluidity as Reusable 
Functional Blocks (RFBs); ii) Agility, via the rapid 'chaining' 
of these RFBs to form exactly the service required; iii) 
Simplicity, via virtualization of radio and network processing 
tasks, network functions and services (a fully cloud-based 
architecture); iv) Portability, via platform-independent 
abstractions, permitting the reuse of network functions across 

multiple heterogeneous types of hardware; v) High 
performance, via software acceleration, specialization and 
adaptation to hardware accelerators. 
In this paper, we outline the Superfluidity architecture and 
describe how it builds on the well-known concepts of Network 
Function Virtualization (NFV) [7], Software Defined 
Networking (SDN) [8], Mobile Edge Computing (MEC) [9] 
and Cloud Radio Access Network (CRAN) [10]. We believe 
that a network implementing our architecture would be 
“superfluid”: it would have the ability to instantiate new 
services on-the-fly, run them anywhere in the network (core, 
aggregation, edge) and shift them transparently to different 
locations; and it would enable innovative use cases in the 
mobile edge, empowering new business models, and reducing 
investment and operational costs. The use cases that are 
driving the design of the Superfluidity architecture are 
described and analyzed in [11]. 
The main contributions of this paper are the following ones. 
First, we propose a “superfluid” network, which is based on 
RFBs, and that iteratively allows the decomposition of 
network functions into smaller components. Second, we define 
the RFBs. Both contributions are innovative, even if we 
recognize that future works, targeting the experimental 
evaluation of the proposed architecture, are necessary to fully 
assess the performance and the merits of the Superfluidity 
architecture. 
The rest of the paper is organized as follows. We describe the 
main building blocks of Superfluidity in Section II. The 
architectural framework of Superfluidity is reported in Section 
III. Section IV highlights the design principles and the 
requirements. The overall Superfluidity architecture is 
described in Section VI. Finally, Section VI summarizes our 
work. 

II. BUILDING BLOCKS  
Superfluidity leverages: i) SDN and NFV technologies, ii) the 
latest advancements in CRAN, and iii) MEC technologies. 
The following sections describe these building blocks.  

A. NFV plus SDN 
SDN [8] and NFV [7] are significant technology evolutions 
that are key to realizing 5G networks. The primary focus of 
SDN is to decouple the control plane from the data plane, 



allowing operators to simplify service and networking 
provisioning. NFV enables the “cloudification” of Network 
Functions (NFs), which may be implemented either on 
dedicated or commercial-off-the-shelf (COTS) hardware.  
A NF could model either a traditional physical entity (like a 
router or an e-NodeB) or a logical function resulting from the 
decomposition of functionalities belonging to one or more 
layers of the protocol stack (from the physical layer up to 
application layer). Traditionally, NFV and SDN have been 
developed as two separate technologies. However, they may 
offer a significant value if combined in the same architecture. 
In particular, the NFV paradigm supports the deployment of 
network functions on demand, giving the opportunity to place 
them on the most suitable elements and to use the appropriate 
amount of resources (see Figure 1). On the other hand, these 
tasks require SDN to configure the network suitably, to make 
the network programmable and to define function chaining. 
Significant functional synergy exists between NFV and SDN, 
simply by taking the ETSI NFV architecture and introducing 
the SDN paradigm over it as shown in Figure 2. By doing so, 
NFVs splits the control plane (SDN App) from the data plane 
(VNE – Virtual Network Element). In the middle, the SDN 
Controller is introduced as an abstraction layer. Legacy VNF 
and SDN components can be already supported. 

 

B. Cloud Radio Access Network 
The main idea behind Cloud-RAN (CRAN) [10] is to pool the 
Baseband Units (BBUs) from multiple base stations into a 
centralized BBU pool for statistical multiplexing gain. A 
minimal set of critical functions remain at the radio head 
(RRH, Remote Radio Head), whose main function is 
frequency shifting. With CRAN, it is then possible to have a 
very tight coordination between cells and to maximize the 
radio capacity in bps/MHz/cell. Additionally, by leaving only 
the RRH on-site with a compact power supply, CRAN 
facilitates antenna site engineering and provides footprint 
reduction, as well as shorter installation times and lower rental 
and energy costs. 

C. Mobile Edge Computing 
A key enabler for low-latency scenarios of 5G networks is the 
concept of Mobile Edge Computing (MEC) [9], whose main 
idea is to deploy computing capabilities near to end users. 
MEC allows supporting Radio Access Network (RAN) 
processing and third party applications. This technology 
brings a set of advantages: i) ultra-low latency, ii) high 
bandwidth, iii) real-time access to radio network information 
and iv) location awareness. As a result, operators can open the 
radio network edge to a third party, allowing them to rapidly 
deploy innovative applications and services towards mobile 
subscribers, enterprises and other vertical segments. One of 
the goals of Superfluidity is to integrate MEC in the overall 
architecture such that the MEC platform can rely on the same 
physical resources of an Extended-NFVI. 

III. ARCHITECTURAL FRAMEWORK FOR SUPERFLUIDITY 
The Superfluidity project aims to design a unified, high 
performance and distributed cloud platform for radio and 
network functions support, as well as their migration. In our 
vision, CRAN, MEC and cloud technologies are integrated, by 
adopting an architectural paradigm able to create the glue that 
can unify heterogeneous equipment and processing into one 
dynamically optimized, superfluid, network. Figure 3 depicts a 
high-level view of the overall architectural framework. The 
top layer of the Figure includes the different components 
involved (CRAN, MEC, virtual core and Data Centers (DC)), 
while in the bottom layer the different types of physical DCs 
are shown (namely Cell-site, Local, Regional and Central). 
This classification is somehow arbitrary and the infrastructure 
of different operators can be structured in different ways. The 
next layer down is a traditional Operational Support System 
(OSS), whose main goal is to deal with all the components in 
order to create services for end-users. 
The underlying Extended-NFVI, located at the bottom of the 
proposed architecture, represents an evolution of the ETSI 
NFVI concept. The current NFVI focuses on supporting VMs 

 

 
 

Figure 1 ETSI NFV Architecture (simplified) from [12]. 
PNF = Physical Network Function, VNF = Virtual Network 

Function, NFVO = Network Function Virtualization 
Orchestrator, VNFM = Virtual Network Function Manager 

 
Figure 2 Combined NFV and SDN view [13] 

  



or containers to run VNFs; the E-NFVI also considers 
heterogeneous execution environments that we will present in 
Section V. This extended-NFVI is common to all components, 
simplifying resource management and allows agile 
(superfluid) orchestration of services. The mapping of the 
components into the different physical DCs (Cell, Local, 
Regional) shown in Figure 3 and described hereafter is the one 
considered for the Superfluidity testbed implementation. 
However, we stress that the dynamicity of the architecture, 
and the concept of an Extended-NFVI, allows support for 
different solutions, derived by considering the various trade-
offs between performances and efficient utilization of 
resources.  
Starting from the left, the CRAN component is split into two 
blocks, corresponding to the RRH and the BBU components. 
The RRH is placed in the cell-site, while the BBU is located in 
a specialized local DC, adapted for telecommunications. It is 
assumed that the local DCs will control a small number of 
cell-sites and that they are geographically distributed, but in 
general proximity to the cell sites. The BBU functionalities 
will be virtualized and thus they will benefit from the 
centralization to scale in/out, according to the load and to be 
fully re-programmable under a holistic NFV/SDN controller. 
Figure 3 also shows the MEC components. Specifically, the 
white paper on MEC [21] suggests that placing servers in 
aggregation and radio access networks, where currently only 
base stations and radio network controllers operate, will 
increase network efficiency, along with several additional 
benefits. In our architecture the MEC component is deployed 
in the same location (local DC) as the CRAN, given the fact 
that it utilizes the exact same infrastructure with the latter or 
other VNFs. This endogenous characteristic of MEC 
significantly increases efficiency and ease of use. The next 

component shown in Figure 3 is the virtual Core (vCore), 
comprising the central nodes of a cutting-edge mobile 
network. The vCore runs on the common E-NFVI, usually 
located in regional DCs. In this way, both agility and fluidity 
of the overall architecture are improved, especially when live 
nodes need to be migrated and/or scaled. The Figure shows the 
expected evolution of mobile core networks towards the SDN 
model, where the control plane and data plane components are 
completely separated, with the former fully controlling the 
latter on data processing tasks. In particular, the components 
shown are the ones resulting from splitting the 4G/LTE Core 
elements. The DC component corresponds to the traditional 
datacenter segment, where a large number of services are 
deployed. These services are located at central points and deal 
with significant compute/storage/network resources. Beyond 
traditional services, central DCs also implement NFV and 
SDN technologies, in order to control the network components 
inside the DC. For this reason, a generic VNE (Virtual 
Network Element), a SDN controller and a generic App 
element are included in the architecture. 
The last part of the architecture is the common management 
and orchestration vertical layer (right part of the Figure), 
which is responsible for providing the system intelligence. It 
includes a NFV-like set of functions, which supports an 
integrated view of the overall architecture, including networks, 
services and DCs. In this way, it is possible to take advantage 
of a common extended-NFVI and achieve an end-user centric 
view of the ecosystem. This layer is responsible for resource 
management over the different DCs illustrated at the bottom of 
Figure 3, thus building a federated environment. Moreover, it 
orchestrates VNFs to create complex services, taking the best 
decisions for services to be deployed, while considering 
customer needs. 

 
Figure 3: Architectural framework for Superfluidity with an example mapping into the physical Data Centers 

 



Finally, Table I summarizes the Superfluidity innovative 
contributions beyond the current state of the art. 

IV. DESIGN PRINCIPLES AND REQUIREMENTS 
In this section, we highlight the main principles behind the 
design of the Superfluidity architecture. In Section V we will 
discuss how we put these principles in practice, by detailing 
the vision of the Superfluidity architecture. 
Recursion: The Superfluidity architecture needs to be 
recursive, natively handling layering and partitioning. The 
concept of layers can be described as follows. Today, global 
network operators can act as virtual operators in those 
countries where they buy network access from other operators. 
Similarly, we expect that some virtual network functions will 
actually be delivered by a (or several) virtual function(s) run 
in a different layer. Potentially, there could be several levels of 
hierarchy. An arbitrary number of layers can exist, which can 
be within a single operator. Regarding partitioning, the 
concept is that there may be several successive, separately 
operated networks on the end-to-end path. An important 
aspect of recursion is that the architecture is the same at each 
level and in each partition – there is nothing special about 
being at ‘level 2’ in ‘regional network C’, say.  
Scalability: A proper layering is also important for the 
scalability of the system. Events may need to be handled 
“locally” in a layer in order to avoid higher layers being 
swamped with too much unnecessary information.  
Separation of state and processing: The basic idea is to 
separate the actual in-line processing of the network function 
from its internal state. For example, a NAT function would 
read the private address and then perform a look up, in a 

separate data store, to find the associated public address. Such 
separation should help with resilience against failures and 
seamless scaling. Essentially, this is about reapplying the 
approach of cloud-scale applications to virtualized network 
functions. The main challenge is how to achieve good 
performance despite the decoupled state [14]. 
Support for minimal Virtual Machines: The key principle 
enabling resource and service abstraction is virtualization, 
which allows the creation of virtual machines on top of 
physical ones. In this context, it is useful to create lightweight 
virtual platforms, e.g., only retain the features that are 
mandatory for each VM. In this way, it is possible to make 
very efficient use of resources, allowing thousands of mini 
VMs to run on a single physical host. The instantiation time of 
these VMs can also be kept very low, allowing the deployment 
of the VMs on demand. 
Support for extended finite state machines: The application 
of abstract finite state machines as “platform agnostic 
programming language” for network processing tasks has been 
recently proposed in [15]. This work has specifically 
introduced a network node architecture, which extends the 
stateless OpenFlow match/action abstraction, and permits to 
support the dynamic execution of Mealy Machines (a subset of 
the more general class of eXtended Finite State Machines - 
XFSMs). This architecture introduces a control logic in the 
switches (which are included in the physical infrastructure 
networking blocks in Fig.3), offloading the decisions based on 
local states from the controllers. 
On-the-fly monitoring: The superfluid network will be 
highly dynamic in how and where it instantiates VNFs and 
VMs, with many individual and chained lightweight functions. 

TABLE I: SUPERFLUIDITY’S INNOVATIONS AND GOALS 
Research Area Superfluidity Goals 

Cloud 
Networking 

NFV 
Virtualized 

Environment 

- Achieve 10-40 Gbps throughput with virtualized and software based packet processing. 
- Achieve tens of ms. (or lower) service instantiation. 

- Achieve massive consolidation and migration of services. 

Software Radio 
and DSP 

Virtualization 

- Unify and abstract the protocol stack and the hardware platform to instantiate multiple vendor protocols. 
- Open radio platform and enable third parties to design the protocol stack. 

- Design portable runtime dataflow engines, enabling simultaneous seamless execution of multiple protocols. 

High Perf. 
Software-Based 

Packet 
Processing 

- Achieve high performance with commodity hardware. 
- Increase the level of flexibility by going beyond the paradigms of proprietary, embedded systems. 

- Enable agile network function deployment. 

Network Service Decomposition 
and Programmability 

- Introduce program abstractions specifically targeted to 5G functions. 
- Combine block-based composition abstractions (such as those exploited in Click routers [16], or emerging in the 
ETSI NFV work on service chaining) with event-driven programming paradigms such as basic match/action based 

approaches or more powerful stateful abstractions based on extended finite state machines. 

Cloud RAN and Mobile Edge 
Computing 

- Enable modular “hot” replacing of eNB functions (such as scheduling) and allow migration of such functions 
between edge clouds and the antenna subsystem, so as to balance algorithmic complexity with front-haul capacity.  

- Enable the migration of non-RAN functions (like local caching and CDN) between the Remote Radio Head and the 
edge cloud, to maximize their performance. 

Automated Security and 
Correctness 

- Provide a pre-deployment checking system to ensure that virtualized network services do not negatively affect the 
network nor other tenants; the system has to be both scalable and stateful, able to model most types of services.  

- Implement a post-deployment system that will learn the behaviour of traffic and detect any anomalies, thus 
providing a further security mechanism in cases where the checking system does not have information about the 

processing performed by a network function, or when static analysis is inaccurate. 

 



Thus, we will need suitable measurements such that the 
virtualization adapts appropriately, without unnecessary data 
resolution and diversity – one can imagine a naive approach 
leading to an n2 scalability problem, where much of the 
network and processing resources are expended on measuring 
the lack of those resources. This suggests that the key is 
flexibility – monitoring should be installed “on the fly”, as and 
when needed – not to mention, what and where needed - and 
under the control of the ‘management and orchestration’ 
functionality at that layer and network. Even in scenarios that 
require more advanced monitoring capabilities (e.g., when 
network and service elements related to the overall Quality of 
Experience (QoE) of users need to be tracked or analyzed), the 
superfluid network should be able to facilitate this type of 
demand, via deploying specialized virtual probes, in an ad-hoc 
manner. Information regarding real-time network conditions 
can be extracted, further enhancing the orchestration and 
management abilities of the proposed architecture.  

V. SUPERFLUIDITY ARCHITECTURE 
The vision of the Superfluidity project is to move from the 
current architectural approaches based on monolithic network 
components/entities and their interfaces, to an approach where 
components can be “constructed” via the programmatic 
composition of elementary “building blocks”. The allocation 
and deployment of the building blocks over the underlying 
infrastructure should be highly dynamical, ideally allowing a 
continuous real-time optimization. The decomposition of high-
level monolithic functions into reusable components is based 
on the concept of Reusable Functional Blocks (RFBs). A RFB 
is a logical entity that performs a set of functionality and has a 
set of logical input/output ports. In general, a RFB can hold 
state information, so that the processing of information 
coming in its logical ports can depend on such state 
information. RFBs can be composed in graphs to provide 
services or to form other RFBs (therefore a Reusable 

Functional Block can be composed of other RFBs). RFBs 
need to be characterized and described in a formal manner. 
Additionally, we need platform-agnostic node-level and 
network-level “programs” describing how the RFBs interact, 
communicate, and connect to each other so as to give rise to 
specific (macroscopic, and formerly monolithic) node 
components, network functions and services. A language that 
supports the description and the interaction of RFBs is referred 
to as RFB Description and Composition Language (RDCL). 
The heterogeneous computational and execution 
environments, supporting the execution (and deployment) of 
the RDCL scripts and the relevant coordination of the 
signal/radio/packet/flow/network processing primitives are 
referred to as RFB Execution Environments (REE). Figure 4 
shows the relationship between the RFB, RDCL and REE 
concepts. The figure also shows that the model (with technical 
differences) is recursively applied at different levels. At each 
level, we identify a REE User and a REE Manager. The REE 
User requests the deployment/execution of a service / service 
component described using a RDCL script to the REE 
manager. The REE Manager is in charge of 
deploying/executing the RCDL script using the resources 
within its REE. Within an REE, the REE Manager interacts 
with the REE Resources Entities that are required to support 
the realization of the RCDL script. In Figure 4, two types of 
APIs are shown. The User-Manager (UM) API is used by the 
REE User that wants to deploy a service or a component into a 
REE. The Manager-Resource (MR) API is the interface used 
by the REE Manager to interact with the resources in its REE. 

A. Reusable Functional Blocks (RFBs)  
The RFB decomposition concept is applied to different 
heterogeneous environments. An RFB may be analogous to a 
traditional VNF or VNFC, implemented as a fully-fledged VM 
running on a hypervisor or in an OS container. An RFB can 
correspond to a small footprint Unikernel VM running in a 
specialized hypervisor. In the latter case, the execution 
environment is the hypervisor specialized in supporting 

 
Figure 5: Class diagram for the current approach (left side) 

and the proposed one (right side).  
Figure 4: Superfluidity Architecture 



lightweight VMs. RFBs can also be modules or components of 
special purpose execution environments, like extended finite 
state machines based on OpenFlow for packet processing [15], 
software routers [16], or radio signal processing chains [18].  
In general, an RFB may hold state information on which the 
overall information processing is based upon. It also contains 
a set of characteristic properties, with the RFB’s execution 
environment being the most imperative one. A logical RFB 
can have more than one possible execution environment 
meaning that it can be realized by using a variety of 
technologies and frameworks. RFBs are characterized by their 
resource requirements (i.e., storage, processing), their load 
limitation (i.e., maximum number of packets per second or the 
number of different flows) and most importantly, the set of 
logical ports they support (i.e., data plane ports, control plane 
ports, management plane ports). All types of logical ports 
facilitate inbound and outbound information flows to the RFB, 
with the majority of RFBs being designed to support seamless 
port operation under load. RFBs characterization may be 
augmented by using a formal description of their behavior.  
Figure 5 highlights the difference between the current ETSI 
model and the proposed approach. In the ETSI model, there is 
a fixed hierarchy between VNF Groups (defined in [12], but 
not considered in [19]), VNFs and VNF Components. VNF 
Components cannot be further decomposed.1 In the proposed 
recursive model, all elements are RFBs and the decomposition 
can be iterated an arbitrary number of times.  
In order to ensure that the RFBs are properly combined, the 
consistency between the information exchanged over the ports 
needs to be validated. Therefore, appropriate modelling of the 
information is required. Logical ports are mapped to port 
instances when an RFB is functionally deployed. Logical ports 
can be combined using the concept of aggregated logical 
ports. For example, an IP router working with the OSPF 
protocol can be represented as having/offering two types of 
logical ports: data plane ports for routing of IP packets; OSPF 
control plane ports for discovering OSFP adjacent entities and 
exchanging routing information with them. The two logical 
ports are combined in an aggregated logical port, which 
supports the exchange of IP packets; i.e., both data plane and 
OSPF control plane packets. 

B. RFB Description and Composition Language  
A key aspect to enhancing portability is the ability to describe 
a complex and potentially stateful network function as the 
combination of RFBs. Specifically, our goal is to obtain a 
platform-agnostic formal description of how such RFBs 
should be invoked, e.g. in what order, with which input data, 
and how such composition may possibly depend on higher 
level “states”, and change based on such states. 

                                                             
 
1 Actually, the framework discussed in [9] introduces the concepts of VNF 

decomposition and composition in a general way, leaving their detailed 
specification for further study. The practical constraints on the 
decomposition of VNF Components have been introduced in [15]. 

While the idea is simple, its actual specification is challenging. 
Different languages may be more appropriate to different 
network contexts (e.g., for node-level programmable switch 
platforms opposed to network-wide NFV frameworks). 
Currently, to the best of our knowledge, there is not a clear-cut 
candidate standing out. Indeed, the typical approach, used in 
block-based node platforms (such as the Click router [16], or 
even in Software Defined Radio platforms) of formally 
modelling a composition of blocks as a Direct Acyclic Graph 
of such blocks may be insufficient, as it does not permit the 
programmer to introduce the notion of “application level 
states” and hence dynamically change (adapt) the composition 
to a mutated stateful context. Languages in the If-This-Then-
That family, recently introduced in completely different 
contexts (such as web services or Internet of Things scenarios) 
may find application also in the networking context, given 
their resemblance with the matching functionality frequently 
used in forwarding tasks, although, again, stateful applications 
may require extensions. It is worth noting that the 
Superfluidity project is specifically addressing novel 
languages formalized in terms of eXtended Finite State 
Machines (XFSM). 
Some of the features that VNF, Virtual Machine and Compute 
Host Descriptors should have for the appropriate deployment 
of VNFs on Virtual Machines over Compute Hosts in a telco 
data center are described in [20]. 

C. RFB Execution Environment 
The RFB Execution environment is responsible for 
deploying/executing a predefined composition. The role of the 
REE is to instantiate a desired RDCL script instance, control 
its execution, maintain and update the application-level states, 
trigger reconfigurations, and so on. In traditional network-
wide NFV scenarios, an orchestrator generally fulfils this role. 
On the contrary, with VNFs implemented in software within a 
container, or VM, this role is fulfilled by a software entity 
running in the VM itself. Conversely, the case of high-speed 
bare metal switches, where configuration and per-flow state 
maintenance must occur at wireline speed, it is more 
problematic. As a matter of fact, in most architectures this role 
may not be clearly identified, and having it “generically” 
delegated to the overlying software/control stack may not be 
the most performant or effective solution, and may lead to 
performance bottlenecks and slow-path operation. The REE 
could potentially be seen as a generalization and enhancement 
of the NFVI (NFV Infrastructure). In the current model the 
infrastructure (NFVI) provides resources and an external 
orchestrator coordinates them (but it only instantiates VMs 
and connects them according to the graph that describes the 
network services). In the envisaged model, the enhanced 
infrastructure REE provides the means to execute arbitrarily 
complex RDCL scripts operating at different levels. 

D. Mapping in Working Platforms 
We now provide different representative examples on how the 
RFB concept may be mapped to different working platforms. 



CRAN – Today, the network is a network of elements (e.g., an 
e-NodeB) hosting a set of functions. However, using 
virtualization technology to address 5G requirements, it makes 
sense to re-examine this functional split across set of RFBs to 
introduce the required 5G flexibility. In addition, the same 
functionality, such as authentication/authorization, is currently 
implemented in different network elements (i.e., packet data 
network gateways and mobility management entities) to 
ensure vendor compatibility. Through the decomposition, each 
functionality (authentication, authorization, radio resource 
management, turbo decoding, fast Fourier transform, etc.) will 
be dedicated to an RFB, thus allowing a modular design of 
5G. Updating any RFB is now possible without interfering 
with other RFBs.  
Mobile Edge Computing – By introducing the notion of RFB 
in MEC, it becomes easier to: i) scrutinize constituent 
elements of the aforementioned components, ii) distinguish 
those that can be virtualized, implemented and re-utilized in 
the most efficient way, and iii) provision a network capable of 
handling its resources with a higher degree of granularity.  
Click and ClickOS - Click [16] is a software architecture that 
decomposes the functionality of a packet-forwarding node into 
elements that are interconnected to implement arbitrarily 
complex functions. Click elements operate on packets (e.g. at 
IP or Ethernet level) by performing inspections and/or 
modifications of the different fields. A large number 
(hundreds) of built-in Click elements are available, including 
for example Packet Classifiers, Rate Monitor, Bandwidth 
Shapers, and Header Rewriters. The interconnection graph of 
Click elements is called a configuration, which is described by 
a declarative language. The language allows the definition of 
compound elements composed of other elements. In our 
vision, a single Click element represents an RFB and a 
configuration that combines Click elements represents again 
(composed) RFBs. In [17], it is shown how a Click 
configuration can be executed in minimalistic virtual machines 
that run in a specialized hypervisor called ClickOS. ClickOS 
Virtual Machines can be seen as RFBs and can be composed 
to implement the desired packet processing services. 
eXtended Finite State Machines - Superfluidity plans to 
further extend the initial work carried out in [15] for XFSMs. 
The goal is to devise a programmable network node 
architecture, which supports “full” XFSMs and allows the 
deployment of more complex network functions such as load 
balancing, stateful traffic filtering, monitoring and traffic 
classification tasks. 

VI. SUMMARY 
We have described the general architecture of the 
Superfluidity project, whose main goal is to design and to 
implement a converged network architecture being location, 
hardware and time-independent. Superfluidity will push the 
boundaries of what is currently possible with virtualized, 
software-based packet processing. Additionally, we have 
detailed the main idea behind Reusable Functional Blocks.  

ACKNOWLEDGEMENT 
This work was performed in the context of the project 
Superfluidity, which received funding from the European 
Union’s Horizon 2020 research and innovation programme 
under grant agreement No. 671566. 

REFERENCES 
[1] A. Gupta, and R.K. Jha, “A Survey of 5G Network: Architecture 

and Emerging Technologies,” in IEEE Access, vol.3, 2015 
[2] C. X. Wang, et al. “Cellular architecture and key technologies 

for 5G wireless communication networks,” IEEE 
Communications Magazine, vol.52, no.2, pp.122-130, 2014. 

[3] L. Atzori, A. Iera, and G. Morabito. “The internet of things: A 
survey,” Elsevier Com. Net., vol.54, no. 15 pp 2787-2805, 2010. 

[4] F. Boccardi, et al. “Five disruptive technology directions for 
5G,” IEEE Comm. Magazine, vol. 52, n.2, pp. 74-80, 2014. 

[5] J. G. Andrews, et al., “What will 5G be?” IEEE Journ. Sel. 
Areas in Comm. vol. 32, n. 6, pp. 1065-1082, 2014. 

[6] P. Agyapong, et al., “Design considerations for a 5G network 
architecture,” IEEE Communications Magazine, vol. 52, no. 11, 
pp. 65–75, 2014. 

[7] R. Jain and S. Paul, “Network virtualization and software 
defined networking for cloud computing: a survey,” IEEE 
Communications Magazine, vol. 51 no.11, pp. 24-31 2013. 

[8] N. McKeown, “Software-defined networking,” Keynote talk at 
IEEE INFOCOM, Rio de Janeiro, Brazil, 2009. 

[9] N. Fernando, S.W. Loke, and W. Rahayu, "Mobile cloud 
computing: A survey." Future Generation Computer Systems 
vol. 29, no.1 pp. 84-106, 2013. 

[10] A. Checko, et al., “Cloud RAN for mobile networks—a 
technology overview” IEEE Communications Surveys & 
Tutorials, vol. 17, no.1, pp. 405-426, 2015. 

[11] P. Eardley (ed.), et al., “Use cases, technical and business 
requirements”, deliverable 2.1 of Superfluidity EU project, 
available on line at http://superfluidity.eu 

[12] ETSI ISG NFV: Network Functions Virtualisation (NFV); 
Architectural Framework. ETSI GS NFV 002 V1.2.1. Dec 2014. 

[13] P. Neves, et al., “The SELFNET Approach for Autonomic 
Management in an NFV/SDN Networking Paradigm,” 
International Journal of Distributed Sensor Networks, 2016.  

[14] M. Kablan, et al., “Stateless network functions,” ACM 
HotMiddlebox, London, UK, August 2015. 

[15] G. Bianchi, et al., “OpenState: programming platform-
independent stateful openflow applications inside the switch,” 
ACM SIGCOMM Computer Communication Review, vol. 44, no. 
2, pp. 44-5, 2014 

[16] J E. Kohler, et al., “The Click modular router,” ACM 
Transactions on Computer Systems (TOCS), vol. 18, no. 3, 2000 

[17] J. Martins et al., “ClickOS and the Art of Network Function 
Virtualization”, USENIX NSDI ’14, Seattle, USA, 2014. 

[18] M. Bansal, et al., “Openradio: a programmable wireless 
dataplane,” ACM HotSDN, Helsinki, Finland, August 2012. 

[19] ETSI ISG NFV: Network Functions Virtualisation (NFV): 
Virtual Network Functions Architecture. ETSI GS NFV-SWA 
001 V1.1.1. December 2014. 

[20] ETSI ISG NFV: Network Functions Virtualisation (NFV): NFV 
Performance & Portability Best Practises. ETSI GS NFV-PER 
001 V1.1.2. December 2014. 

[21] ETSI Portal, “Mobile-Edge Computing – Introductory Technical 
White Paper”, September 2014, Available online on 
https://portal.etsi.org 

View publication stats

https://www.researchgate.net/publication/304098534

