
1

Allocation of Channels in

Wireless Tree Topologies
Dragos, Niculescu ETTI, University Politehnica of Bucharest, Romania

Sudeept Bhatnagar Airtight Networks, Sātāra, India

Samrat Ganguly NEC Corporation of America, USA

Abstract—Judiciously assigning channels to a wireless mesh
network can substantially enhance capacity of the network. One
particular flavor of mesh network is that with a tree topology,
which has the property that all traffic passes through one central
point. Usually the allocation problem is linked to problems of
routing, load, and measurements of interference. In this paper
we take advantage of the restrictions on the routing, and on
potential load imposed by the topology, to present an allocation
algorithm that is tailored for wireless trees. Using the connection
characteristics of the topology, we define a conflict graph over
which a coloring heuristic can provide better performance by not
having to focus on connectivity/routing/interference. We show
that the algorithm has a low complexity (quadratic in the
number of nodes), and in simulation shows significant gains in
performance when compared to simpler solutions.

I. INTRODUCTION

The capacity of a wireless mesh network is affected by

the degree of channel reuse among its wireless nodes. IEEE

wireless standards have the provision to use multiple channels

in the network and mesh nodes typically have multiple radio

interfaces which can be configured to use distinct channels. An

efficient channel allocation algorithm can exploit the channel

diversity provided by the wireless standards to maximize

the capacity of a wireless mesh network by tuning different

interfaces to different channels.

A channel allocation algorithm may have the topology

knowledge and optionally, the traffic pattern information to

aid in its decision making. This work deals with a specific

case of wireless mesh networks where the routing structure is

a tree. In this topology, all the mesh nodes act as the access

points for clients and all the traffic flows through the root node.

The root node acts as the gateway for all communications.

Each mesh node forwards its traffic towards the root possibly

over multiple hops and all the traffic meant for that mesh

node follows the reverse path from the root to itself. We

leverage these characteristics to design an efficient channel

allocation algorithm specifically for tree-structured wireless

mesh networks.

II. NETWORK MODEL & PROBLEM STATEMENT

We consider a wireless mesh network of N nodes. Each

node has two interface cards to communicate on the mesh. The

mesh nodes may also have a third interface card which is used

to communicate with the clients. The third interface card uses

Parts of this work were performed while authors were employed by NEC
Laboratories America, Princeton NJ

a different carrier than the two used for communicating with

the mesh nodes (for example 11a vs. 11b). The interference set

Ik for node k is defined as the set of nodes which can interfere

with k if they transmit on the same channel (using either of

the interfaces). We consider the Boolean model of interference

where a node either interferes or does not interfere with any

other node. There is no notion of partial interference or the

actual amount of interference (packet loss) that a node causes.

The simplicity of this interference model is important to keep

the interference information obtainable in a practical setting.

The routing structure for the network is a tree. All nodes

act as access points for the clients and route the traffic to/from

the root. Each of the other nodes uses its mesh access cards as

upcard or downcard (Figure 1). All traffic towards the root is

sent on the upcard and all traffic from the root meant for one

of the downstream mesh nodes is forwarded on the downcard.

All traffic to/from the client uses separate client access cards.

The root node uses both its mesh access cards as downcards

since it does not have any parent in the mesh. This serves

the purpose of increasing the mesh capacity since the root

is likely to become the bottleneck in such a scenario. Using

two downcards (on different channels) doubles the amount of

traffic that the root can source.

A node k has tk units of traffic to send towards the root.

Since all traffic goes to/from the root, the traffic that a mesh

node sends to its parent (towards the root) is the sum of traffic

from all its children and the traffic generated by the clients.

Similarly, all traffic it receives from its parent is the sum of

traffic meant for its clients and its children. Thus, the total

traffic at the nodes higher up in the tree is always going to be

higher than the total traffic at the nodes lower in the tree.

There are a fixed number of channels that we can use. For

example, 802.11b has 3 orthogonal channels and 802.11a has

12. The exact number of channels that we can use is an input

to our algorithm. The channels are considered orthogonal,

i.e., each channel is essentially unaffected by the traffic on

any other channel. We do not consider partially overlapping

channels like those possible in 802.11b. Our goal is to assign

channels to the mesh access cards of the mesh nodes. We do

not assign channels to the downcards of the mesh nodes which

do not have any children in the tree (essentially these cards are

not used). We do not consider the channel allocation between

the mesh node and its clients and focus on the mesh portion

only. Furthermore, we are not concerned with the routing

portion of the problem; in fact in our model where all traffic

flows to/from the root, the routing structure is equivalent to

2

Root

1 2

3 4 5 6

7 8 9

Upcard

Downcard

Fig. 1. A wireless mesh network with tree topology

the tree topology. However, we recognize that joint channel

allocation and routing is an interesting problem.

III. CHANNEL ALLOCATION

Since all traffic flows through the root, we know that the

number of cards that the root node can have is not more

than the total number of channels available in the technology

the mesh uses. Otherwise, more than one of the cards that

the root hosts will be forced to communicate on the same

channel thereby splitting the throughput and rendering the

extra card useless. In this section, we describe our algorithm

to assign channels on the tree topology. The algorithm utilizes

the properties of the traffic on the tree to assign channels. The

algorithm also uses the information regarding which pairs of

mesh nodes are within each others carrier sense range.

However, one of its limitations is that it does not use any

information regarding the interference caused at a node by

other nodes that are beyond its carrier sense range. However,

our algorithm has been intentionally designed to use this

simple information as interference modeling and measurement

are not yet fully understood and may require some amounts

of network downtime to build. Our algorithm is designed to

use only the information which may easily be deduced in real

scenarios.

A. Insights on the Tree Topology

We utilize the following information that is valid on a mesh

network with a tree topology but not in a generic mesh:

• Since all traffic flows to/from the root, the total traffic at

a node higher up in the tree (closer to root) is never less

than the traffic at the nodes in its sub tree. In fact, the

total traffic between a node and its parent is equal to the

sum of the total traffic between itself and its children and

the traffic that is sourced by the clients directly attached

to it. This because the mesh node merely relays traffic

from(to) the children node and its own clients, to(from)

the parent node.

• It is better to avoid contention at the links that are higher

up in the tree. This because if contention reduces the

throughput of a link higher up in the tree, that reduction

affects the traffic to/from all the nodes in the sub tree

below the link. Hence if channel overlap is unavoidable,

it is better to allow interference and higher contention

in the lower level links which have less traffic than the

higher level links anyway.

We use these insights in designing our algorithm. Before

describing the algorithm, we first detail the creation of an

auxiliary contention graph from the network topology to ease

the task of channel assignment.

E1

E2 E3

E4

E5E6

Root

1 2

3 4 5 6

87 9

EdgeGroup

(E3)

EdgeGroup

(E2)

EdgeGroup

(E6)

EdgeGroup

(E1)

EdgeGroup

(E5)

EdgeGroup

(E4)

(A) Edge groups (B) Contention graph

Fig. 2. (A) Creation of contention graph with the following interface model:
Edge groups interfere if they have a common node; nodes 1 and 2 interfere
(less than carrier sense distance). (B) Edge groups become nodes in the
contention graph

G – set of all edge groups

le – load of edge group e ∈ G

he – level of edge group e ∈ G

Ie – interference set of edge group e ∈ G

next(x) – element after x in LLPQ

C– set of channels

Fig. 3. Notations used in the algorithm

B. Contention Graph

One key requirement of the channel allocation algorithm is

to allocate channels so that the connectivity of the network

topology is maintained. In case of a tree topology, a channel

allocation algorithm must never allocate separate channels to

the up interface of a node and the down interface of its parent

(else they would not be able to communicate).

To eliminate this possibility, we create an auxiliary graph

over which our channel allocation algorithm executes. We

create edge groups (Figure 2) out of interfaces that must

communicate on the same channel. Thus, all edges between a

node and all its children constitute one edge group. The level

of an edge group is defined as the level of the parent node

for all its edges. All edge groups corresponding to interfaces

that are hosted on the root have a level 0. The level of the

edge group e is denoted as he (height). The notations used

throughout the rest of the paper are summarized in Figure

III-B.

In the auxiliary graph, each edge group is treated as a

vertex. We create an edge between two vertices A and B if

any constituent interface of the edge group corresponding to

A is in carrier sense range of any interface in the edge group

corresponding to vertex B. How to decide wether interfaces

are within carrier sense of each other? In simulation, this is

a decision based on distance, but in a testbed pairs of nodes

will have to measure wether they can access the medium at

the same time. The load on an edge group is then defined as

the total traffic of all nodes in that group. Note that the traffic

demand tk at node k is part of the load of the edge group that

contains its upcard and not the one that has its downcard. This

because all traffic is destined for the root node in our case. The

load on an edge group e is denoted as le . Furthermore, all edge

groups that are neighbors of edge group e in the contention

graph (are interferers) form its Interference set Ie. The channel

3

Algorithm 1 Algorithm to assign channels to edge groups

Step 1: Create Priority Queue(G, le, he)
Initialize empty LLPQ

foreach e ∈ G
x← {y ∈ LLPQ|((hy < he)&&(hnext(y) ≥ he))}
if(x 6= φ)&&(hx == he)

while ((lx ≥ le)&&(hnext(x) == he))
x← next(x)

endwhile
insert e after x in LLPQ

endif
endfor

Step 2: Assign_Channels
Virtual_Capacity ←maxe∈Gle
while LLPQ is not empty

e ← extract_first_element(LLPQ)
if ∃ unused channel c ∈ C

assign channel c to e
continue

endif
if (∃c ∈ C) || (le + Used_Capacity(c,e) ≤ Virtual_Capacity)

assign channel c to e
continue

endif
chan ← (-1)
clevel ← ∞
cload ←∞
foreach c ∈ C

t ←Lowest_Level(c, e)
u ←Used_Capacity(c, e)
if(t < clevel) || ((t == clevel) && (cload > c))

chan ← c
cload ← u
clevel ← t

endif
endfor
assign channel chan to e

endwhile

allocation algorithm assigns channels to the vertices in the

auxiliary graph. All interfaces corresponding to a vertex will

be tuned to that channel. An example of a tree structured mesh

and its corresponding contention graph is shown in Figure 2.

C. The Spread Algorithm

The algorithm aims at coloring the previously constructed

contention graph with a given number of colors (corresponding

to the number of available channels in the network). It has the

level and the load information of each vertex at its disposal. We

refer to the solution as the Spread Algorithm (first described

in [1]) since it primarily tries to spread the channels far apart

depending on the load.

1)Vertex Traversal Order: The algorithm takes a single

pass assigning colors to each vertex of the contention graph.

Clearly, the order in which the vertices are visited plays an

important part in the effectiveness of the channel allocation.

If we visit an ”important” vertex after assigning orthogonal

channels to relatively unimportant vertices earlier, we may end

up having to allocate already crowded channel to the important

vertex leading to a loss in overall throughput. In our case, the

vertex traversal order is determined both by the level and the

load of the vertex. We choose to visit a vertex at a lower level

(higher up in the tree) early in the algorithm. If there are more

than one such vertices, the priority is given to the vertex with

a higher load. For efficient traversal, we build a priority queue

using this logic. We call this queue the Level Load Priority

Queue (LLPQ). The construction of LLPQ is shown at the top

of algorithm 1.

2) Channel Allocation: The channel allocation procedure

gets the next edge group to assign channel by extracting

the front element of the LLPQ. The impact of assigning

each channel to this edge group is tested and it is assigned

the channel whose throughput is expected to be affected the

minimum with the new edge group operating on it. The

question is how to deduce the impact of the edge group’s

traffic on the throughput of that channel.

Our rationale in determining the assignment utilizes the

tree specific observation: If an edge group higher up in the

throughput is affected, then the collective traffic from all nodes

underneath that edge group is also affected. Thus, it is better

to avoid hurting the higher level edge groups as much as

possible. If there are multiple groups at the same level that

are within the interference range of the group being assigned

a channel, a better design choice is to use the channel of the

less loaded group. These two insights serve as guidelines for

our algorithm.

An important concept used in our algorithm is that of virtual

capacity. The virtual capacity of the network is simply the

maximum le over all edge groups (utility functions are detailed

in Algorithm 2). This serves as a guideline for maximum

throughout in our tree based mesh. In an ideal scenario,

whatever the absolute value of total load be, the edge group

carrying the traffic equivalent of the virtual capacity is going

to carry the maximum traffic. For example, if all nodes source

unit traffic, then one of the two edge groups at the root is going

to be the one determining the virtual capacity and also carrying

the maximum traffic. Thus if that edge group is assigned

a distinct channel, any other channel can be thought of as

having a similar capacity (irrespective of the actual value of

the traffic). This is because of the implicit relationship between

virtual capacity and the maximum possible traffic at any one

interface.

The algorithm proceeds by extracting the first element (say

E) of the LLPQ. It then checks the assigned channels for the

neighbors of E in the contention graph. If there is a channel not

yet assigned to any neighbor, E is then assigned that channel.

Algorithm 2 Functions used by Algorithm 1

Used Capacity(c, e)

total_load ←0
foreach x ∈ Ie

if assigned_channel(x) == c
total_load← total_load+ lx

endif
endfor
return total_load

Lowest Level(c, e)
clevel ←∞
foreach x ∈ Ie

if (assigned_channel(x) == c)&&(hx < clevel)
clevel ←x

endif
endfor

return clevel

4

If not, if there exists a channel whose load is low enough that

even after reusing it for E, its total load remains below the

virtual capacity, we assign it to E. If no such channel exist,

i.e., for all channels there is a neighbor of E which is using it

or if its total load will go beyond the virtual capacity, we find

the channel for which the highest using edge group (among E’s

neighbors) has the highest level in the network. For example,

if Channel 1 is being used by an edge group at level 2 and

channel 2 is being used by an edge group at level 1 (both

edge groups being neighbors of E in the contention graph),

then we assign channel 1 to E. This rationale ensures that the

channel used by E would try to minimize the hurt on the nodes

higher up in the tree. If for two channels the highest level edge

groups are at the same level, the channel having lower load is

preferred for E. The algorithm is shown as algorithm 1. The

algorithm’s running time is O(N2) which is the time required

to construct the contention graph. The channel assignment

operation (assuming fixed number of channels) require less

time since it primarily consists of scanning the neighborhood

of each node to find the load on a given channel in its vicinity.

IV. EVALUATION

We now evaluate our channel allocation algorithm using

simulations. For simulations we implemented our channel

allocation algorithm along with two other possible schemes:

• Layered Allocation: In this scheme, the two edge groups

containing the two interface cards at the root node are

allocated two separate channels (say channels 1 and 2).

The remaining channels are allocated based on the level

of an edge group. In particular, edge group at level 1 is

allocated channel 3, the next level channel 4 and so on.

When all channels are exhausted and still edge groups

remain without channels being assigned, we start using

channel 1, 2, and so on.

• Random Allocation: In this scheme, each edge group is

assigned a randomly chosen channel.

• Optimal Throughput: In this case, we assign each edge

group an orthogonal channel so that there is no cross

edgegroup interference. This represents the case where

the total throughput for the given topology, carrier sense

range, and traffic pattern is the maximum possible. This

serves as a guideline as to how close we get to the

maximum possible even with a constrained number of

channels. This value is reported in the caption of each

result figure.

The implementations take as input the topology along with

the traffic from each node to/from root. The algorithms then

generate channels for each edge group. To test the quality of an

assignment, we extended the ns-2 network simulator to handle

multi interface multichannel topology. In the evaluation topol-

ogy, each node has two interfaces, one each to communicate

with its parent and its children. The root node uses both of

its interfaces to communicate with the children (the left and

the right sub tree). The leaf nodes have a single interface to

communicate with their respective parent nodes.

The simulations are done on two topologies shown in Figure

4. The distance of a parent child link is set to 20m in

R

R

�snowflake� topology �fish� topology

Fig. 4. Topologies used for evaluation: “snowflake” topology can be used as
an access network for a circular area; “fish” network for a rectangular area.

F

�

�

�

�

�F

��

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

F

�

�

�

�

�F

��

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

�	
���

�	�����

����	�
F

�

�

�

�

�F

��

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

F

�

�

�

�

�F

��

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

�	
���

�	�����

����	�

Fig. 5. Performance [Mbps] for “snowflake” topology: each card at the root
can handle 6Mpbs (750Kbps per leaf). Optimal throughput=10.94Mbps. left:
unidirectional right:bidirectional

each case, and the carrier sense range is set at 40m. This

is consistent with indoor measurements from popular Atheros

based 802.11a cards operated indoors [2]. The “snowflake”

topology represents a dense case where the depth of the tree is

less but the number of mesh nodes is high to provide coverage.

The “fish” topology represents a case where two corridors of

a rectangular building are covered. In this case, the depth of

the tree is high for a smaller number of nodes. The base case

is the string topology where the root only utilizes one of its

interfaces.

We simulate two traffic patterns for these topologies: 1)

Unidirectional traffic where all traffic flows from the root to

the other nodes. The traffic rate is set to 6Mbps per card

from the root and is divided evenly between all the nodes.

2) Bidirectional traffic where half the traffic from each node

goes to the root and half from the root to the node. Each flow

is a CBR flow with the maximum packet size of - 1460 bytes.

The metric of interest is the total end to end throughput over

all flows (root to node and node root) that a given channel

allocation attains.

F

�

�

�

�

�F

��

����	����
 ����	����
 �����	����

�	����

�	�����

�	��	�

F

�

�

�

�

�F

��

����	����
 ����	����
 �����	����

�	����

�	�����

�	��	�

�	����

�	�����

�	��	�

F

�

�

�

�

�F

��

���
	����
 ���
	����
 ����
	����

�	
���

�	�����

����	�

F

�

�

�

�

�F

��

���
	����
 ���
	����
 ����
	����

�	
���

�	�����

����	�

�	
���

�	�����

����	�

Fig. 6. Performance [Mbps] for “fish” topology. each card at the root can
handle 6Mpbs (1.5Mbps per leaf). left: unidirectional, optimal=10.95Mbps
right:bidirectional, optimal=10.38Mbps

5

F

�

�

�

�

�

�

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�
F

�

�

�

�

�

�

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

�	
���

�	�����

����	�
F

�

�

�

�

�

�

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�
F

�

�

�

�

�

�

����	

��
 ����	

��
 �����	

��

�	
���

�	�����

����	�

�	
���

�	�����

����	�

Fig. 7. Performance [Mbps] for string topology. Left: unidirectional
Right:bidirectional. 4 channels are necessary for all hops to operate at
maximum capacity.

We use the two ray ground propagation model. In the ns2

simulator, a node interferes with a receiving node only if

they are within carrier sense range of each other. Further,

the capture threshold is set to 10db, implying that a signal

received from an interfering node has to be within 10db of

the receiving signal strength if the interfering node has to

cause collision. Otherwise the interfering signal is considered

too weak relatively and would be captured. The results for

the “snowflake” topology are shown in Figure 5 and for the

“fish” topology in Figure 6. We see that our algorithm is

able to attain the optimal throughput in most cases while

using only 5 channels. However, with 3 channels there are

a couple of cases where the layered algorithm can outperform

our scheme. The reason is that the layered algorithm will put

the nodes at the same level (and 2 levels apart) in each others

CS range. Thus, instead of being hurt by packets from an

interfering node which we are not aware of, they properly

share bandwidth. Our algorithm is hurt in this scenario because

there are very few channels to spread and it assigns same

channels to interfering nodes which are outside CS range,

and this slightly degrades the performance. We note that we

generated the Integer Programs corresponding to coloring the

contention graph to figure out the number of colors required

to color each contention graph, and the optimal numbers were

4 or 5 in all cases. Having optimal throughput with fewer

channels is not a violation of this reasoning because the ILP

does not have any notion of traffic or interference. It merely

serves as an indicator of the number of channels required given

the unweighted contention graph with only CS information.

The string topology is an important usecase since multihop

wireless is often considered as an alternative transport net-

work. Here the optimality is easily achieved by the layered

method by simply using all channels in a round robin fashion.

In Figure 7, we see that the Spread algorithm achieves this

optimal performance by the virtue of its clause for reusing

channels as wide apart as possible.

Another set of experiments shows the result of our algorithm

when the traffic pattern is biased. The goal of the experiment

is to see how well does our load awareness perform when

compared to other schemes which are load unaware. In this

setting, we reduced the total traffic demand of each node on

that is in the subtree under one of the interfaces at the root

(say the ”left” card in both fish and the snowflake topology).

We set the traffic demand of left sub tree to be 0.2, 0.5, and

0.8 times the demand of that of nodes in the right subtree. The

bias

fraction

unidir. /

bidir.

channels

used

optimal

[Mbps]

difference

[%]

0.2 B 3 6.37 37

0.2 B 5 6.37 12

0.2 U 5 6.59 16

0.5 B 3 8.07 32

0.5 B 5 8.07 30

0.5 U 5 8.25 18

0.8 B 3 9.72 10

0.8 B 5 9.72 37

0.8 U 5 9.93 29

TABLE I

Gain of the Spread method over the layered method when traffic offered is
biased in the snowflake topology. Bias fraction is the ratio of traffic between
the left subtree and the right subtree of the root. Difference is calculated as
a percentage of the optimum attainable throughput in the given setting.

gain of our method vis-a vis the layered algorithm is shown

for a subset of values in Table I. Note that we are not showing

any results for 12 channels since layered algorithm is unable to

take advantage of 12 channels. These results are for snowflake

topology and similar results hold for the fish topology as well.

In general, we see that our algorithm has significant gains over

other algorithms irrespective of the traffic bias, topology, or

other different settings.

The results clearly show that with 5 or more channels our

algorithm is always better than the other algorithms. With

only 3 channels there are instances where our algorithm can

underperform as layered algorithm tends to put competing

nodes in CS range. With fewer channels when it is not

possible to assign orthogonal channels to all or most of the

competing nodes, having them in CS range serves better.

However, due to its inherent nature, layered allocation does

not take advantage of extra channels. This is evident as the

throughput obtained using 5 or 12 channels is almost identical

(since topology depth is at most 5) even though it is far away

from optimal. This suggests that if large number of channels

are available (as would be the case with 802.11a networks, or

the newer whiteband networks), using layered allocation would

under utilize the resources unless the topology is very deep.

Secondly, with fewer channels, layered allocation may serve

as a simpler alternative. However, its viability is dependent

on the traffic pattern and the nature of the nodes (CS range

and interference sensitivity) and needs to be understood for

specific hardware.

V. RELATED WORK

Researchers have studied the benefits of using multiple

channels and multiple radios in a wireless mesh network:

authors in [3] proposed a new MAC layer to support mul-

tiple channels. Although a new MAC could utilize multiple

channels more efficiently, but it would require modification

to the existing 802.11 MAC, whereas our work is meant

for use in the existing 802.11 MAC. Authors in [4], [3],

[5] provide mechanisms for using multiple channels using

a single interface. The protocol proposed in [4] does not

require synchronization and can work with existing 802.11

MAC. Each node switches channels according to a pseudo

random sequence, and it is guaranteed that the channels of any

two nodes overlap periodically. However, switching might also

6

introduce delays. In this work, we consider multiple interfaces.

[3] proposed the use of single interface to switch channels for

load balancing. [5] proposed a protocol where each node with

a packet to transmit has to switch the channel of the receiver

before transmitting data. This would be costly even on present

hardware, since channel switching introduces high per packet

delay, and interference relations are highly complex. As shown

in [6], [7], the channel allocation is NP-Complete, therefore an

optimal solution is presently difficult to achieve. The authors

in [6] also employ methods to control topology, which may not

be achievable in our case, since the tree is already restrictive.

Malone et al. [8] proposed a completely distributed scheme

that is based on live load, and experimentally showed that it

achieves considerable improvements. Our method is somewhat

similar in spirit, since we also consider the actual load on each

link.

References [9], [10], [11], [12] model the capacity of

multiple channels and interfaces, understanding the benefits. In

[10], authors analyze theoretically the scalability of capacity

with respect to the number of number of channels, and number

of available interfaces. [9] presents a capacity model for

multiple channels, employing the feasibility of a rate matrix

can be verified. Authors in [11] provide an ILP formulation

for throughput optimization in mesh network. They study the

impact of interfaces and channels on the overall throughput.

Contributions [13], [14] provide solutions to the joint chan-

nel assignment and routing problem. Authors of [15], proposed

a method for centralized channel assignment to maximize the

throughput. In [16], authors proposed an adaptive channel as-

signment based on the congestion on a given link. [17] propose

a link layer solution for striping data over multiple interfaces.

[18] proposed a metric WCETT, which is suitable for mesh

network with multiple channels. The network considers the

channel interference and bandwidth apart from ETX measure.

[19] considers the problem of creating a survival topology in a

multichannel scenario and proposes a bandwidth aware routing

algorithm.

VI. CONCLUSIONS

We studied the problem of channel allocation for wireless

mesh networks with a tree topology. Specifically, in our

scenario, each mesh node has two interface cards – the

upcard to communicate with the parent and the downcard to

communicate with the children. All traffic is routed through

the root node of the system. We designed a novel algorithm

that utilizes the knowledge of the topology and the knowledge

of the traffic pattern if available, to assign channels to all cards.

Our experiments show that the algorithm outperforms the

alternate algorithms significantly. In some cases, the through-

put gains are more than two fold. We also find that in several

cases the algorithm attains the maximum throughput when

using the required minimum number of channels which we

calculated using graph coloring ILP for the contention graph.

However, there are further problems to study in this area even

in the specific case of tree topology. Foremost, getting an

absolute interference model and incorporating its impact is an

interesting problem. Furthermore, our work considers the case

where the routes are given to us and we just assign channels.

Given the traffic demands of the nodes, a possible direction

would be to jointly assign channels and routes. This would

provide additional load balancing capability and another knob

to control the interference caused by channel sharing.

Acknowledgment: This work was supported in part by the

CNCSIS grant PN2 Resurse Umane 11/01.07.2009 and by POS-

DRU/89/1.5/S/62557.

REFERENCES

[1] Dragos, Niculescu, Sudeept Bhatnagar, and Samrat Ganguly. Channel
assignment for wireless meshes with tree topology. In Proc. of Interna-

tional Conference on Communications (COMM 2010), pages 383–386,
Bucharest, Romania, June 2010.

[2] Dragos, Niculescu. Interference map for 802.11 networks. In IMC

’07: Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, pages 339–350, New York, NY, USA, 2007. ACM.
[3] J. So and N. Vaidya. Multi channel MAC for ad hoc networks: handling

multi channel hidden terminals using a single transceiver. In ACM

Mobihoc, 2004.
[4] Paramvir Bahl, Ranveer Chandra, and John Dunagan. SSCH: slotted

seeded channel hopping for capacity improvement in IEEE 802.11 ad-
hoc wireless networks. In MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking, pages
216–230, New York, NY, USA, 2004. ACM.

[5] N. Shacham and P. King. Architectures and performance of multichannel
multihop packet radio networks. In IEEE Journal on Selected Area in

Communications, 1987.
[6] Mahesh K. Marina, Samir R. Das, and Anand Prabhu Subramanian. A

topology control approach for utilizing multiple channels in multi-radio
wireless mesh networks. Computer Networks, 54(2):241 – 256, 2010.

[7] Anand Prabhu Subramanian, Himanshu Gupta, Samir R. Das, and Jing
Cao. Minimum interference channel assignment in multiradio wireless
mesh networks. IEEE Transactions on Mobile Computing, 7:1459–1473,
2008.

[8] D. Malone, P. Clifford, D. Reid, and D.J. Leith. Experimental imple-
mentation of optimal WLAN channel selection without communication.
In 2nd IEEE International Symposium, DySPAN 2007, pages 316 –319,
apr. 2007.

[9] M. Kodialam and T. Nandagopal. Characterizing the capacity region in
multi radio multi channel wireless mesh networks. In ACM Mobicom,
2005.

[10] P. Kyasanur and N. Vaidya. Capacity of multi channel wireless networks:
Impact of number of channels and interfaces. In ACM Mobicom, 2005.

[11] A.K. Das, H.M.K. Alazemi, R. Vijayakumar, and S. Roy. Optimization
models for fixed channel assignment in wireless mesh networks with
multiple radios. In Sensor and Ad Hoc Communications and Networks,

2005. IEEE SECON 2005. 2005 Second Annual IEEE Communications

Society Conference on, pages 463–474, Sept., 2005.
[12] W. Wang and X. Liu. A framework for maximum capacity in multi

channel multi radio wireless networks. In Proceedings of CCNC, 2006.
[13] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li. Joint channel

assignment and routing for throughput optimization in multi-radio
wireless mesh networks. In MobiCom ’05: Proceedings of the 11th

annual international conference on Mobile computing and networking,
pages 58–72, New York, NY, USA, 2005. ACM.

[14] P. Kyasanur and N. Vaidya. Routing and interface assignment in multi
channel multi interface wireless networks. In WCNC, 2005.

[15] Ashish Raniwala, Kartik Gopalan, and Tzi-cker Chiueh. Centralized
channel assignment and routing algorithms for multi-channel wireless
mesh networks. In ACM Mobile Computing and Communications

Review(MC2R), volume 8, April 2004.
[16] A. Raniwala and T. Chiueh. Architecture and algorithms for an IEEE

802.11-based multi-channel wireless mesh network. In IEEE Infocom,
2005.

[17] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. A multi radio
unification protocol for IEEE 802.11 wireless networks. In Microsoft

Research TR, volume 44, 2003.
[18] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-hop

multi-radio wireless mesh networks. In ACM MobiCom, Philadelphia,
PA, September 2004.

[19] J. Tang, G. Xue, and W. Zhang. Interference aware topology control
and QoS routing in multichannel wireless mesh net works. In ACM

Mobihoc, 2005.

