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ABSTRACT
The Ultra-Wideband (UWB) technology has grown in popularity
to the point in which there are numerous UWB transceivers on
the market that use different center frequencies, bandwidths, or
hardware architectures. At the same time, efforts are made to re-
duce the ranging and localization errors of UWB systems. Until
now, not much attention has been dedicated to the cross-platform
compatibility of these methods. In this paper, we discuss for the
first time the challenges in obtaining platform-independent UWB
ranging and localization systems. We derive our observations from
a measurement campaign conducted with UWB devices from three
different developers. We evaluate the differences in the ranging
errors and channel impulse responses of the devices and show how
they can affect ranging mitigation methods customized for one
device only. Finally, we discuss possible solutions towards platform-
independent UWB localization systems.

CCS CONCEPTS
• Hardware → Wireless integrated network sensors; • Net-
works → Location based services.
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1 INTRODUCTION
Ultra-wideband (UWB) devices are increasing in popularity for their
centimeter-level ranging and localization capabilities. At this date,
there are at least fourmajor smartphone brands equippedwith UWB
chipsets and at least six developers of UWB platforms. Therefore,
localization systems must ensure interoperability among different
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device brands [22]. For this purpose, the FiRa™ Consortium [4] pro-
vides specifications and certifications that ensure interoperability
between different UWB solutions.

UWB systems can provide centimeter-level ranging and local-
ization accuracy in line-of-sight (LOS) conditions but their perfor-
mance is affected by obstacles between the transmitter (TX) and the
receiver (RX), which is known as non-line-of-sight (NLOS) propa-
gation. Multiple techniques have been proposed for dealing with
errors caused by NLOS propagation [8, 21, 24]. Most of them rely
on the channel impulse response (CIR) of the signal, since it offers
rich information about the propagation path of the signal. However,
so far, little to no attention has been dedicated to ensuring the
proposed methods perform well on different UWB platforms.

To the best of our knowledge, we are the first to look at the
challenges faced by ranging and localization systems when dealing
with devices from different vendors. We derive our observations
from a measurement campaign using UWB devices developed by
three companies: Qorvo, TDSR, and 3db Access. We acquired mea-
surements with pairs of devices from each brand at the same loca-
tions under different LOS and NLOS conditions. The measurements
are made open-source [6] to facilitate future research in platform-
independent UWB localization systems. The goal of the paper is
to evaluate the differences in terms of distance errors and CIRs
between different device models under the same propagation condi-
tions (i.e., the same location, furniture arrangement, crowdedness,
and, if applicable, obstacles).

First, we illustrate the danger in ignoring the cross-platform
compatibility of a centralized localization system. We evaluate the
performance of a neural network (NN) trained to achieve a good
distance error prediction for one device when it is tested on mea-
surements from different devices (acquired at the same locations),
simulating the scenario in which the system disregards the users’
device models. Our results show that an error mitigation technique
that disregards the device model of incoming measurements may
actually degrade the final performance of the system.

Second, we look at the root causes of cross-platform compatibil-
ity issues in UWB systems and we identify four main challenges:

(1) The same environmental conditions lead to different distance
errors for different devices, especially in NLOS conditions.
Although great efforts are made to reduce ranging and local-
ization errors through NLOS detection and mitigation, not
all types of obstacles introduce significant ranging errors
and, perhaps more interestingly, they do not introduce the
same error in all devices even under the same conditions.

(2) The same (NLOS) environmental conditions can lead to a
different time of arrival (TOA) estimation in consecutive
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measurements even for the same device. Therefore, NLOS
errors depend not only on the obstacle and environment, but
also on the hardware and its TOA estimation algorithm.

(3) CIRs acquired by different platforms at the same locations
have different lengths, shapes, and statistics. This can be due
to different center frequencies, pulse shapes and bandwidths,
nonlinearities imprinted by the different front-end architec-
tures on the CIR, antenna propagation characteristics, etc.

(4) Different vendors provide different types of diagnostics (e.g.,
signal power, noise level), sometimes using incompatible or
undisclosed units of measurement, which can hinder the
cross-platform compatibility of localization methods based
on such diagnostics [21].

Finally, we use these observations to make recommendations
towards platform-independent UWB localization systems.

2 RELATED WORK
Measurements with different UWB devices at the same locations
have been previously performed in [7, 11, 16, 19]. However, these
studies were focused on comparing the performance of the devices
in terms of ranging and/or localization accuracy or energy con-
sumption. In this paper, we look not only at the average ranging
error of each device, but also at the error distribution at selected
locations, which gives insight into their different operating modes.
To the best of our knowledge, we are the first to also compare the
CIRs of different devices and to highlight how these differences can
prevent the cross-platform compatibility of ranging and localiza-
tion systems. We also compare other platforms than in the previous
works and provide one of the few open-source datasets of this kind.

The localization accuracy of UWB-based systems can be im-
proved by filtering or correcting individual distance measurements
used in multilateration algorithms and/or by filtering or estimat-
ing locations directly. Distance errors can be reduced through
NLOS detection and mitigation [24], data-driven TOA estimation
algorithms [5], or models trained for distance error prediction [8,
21]. Other approaches estimate directly the location based on CIR
features [12]. In recent years, ML-driven approaches for ranging
and localization have taken precedence over statistics-based tech-
niques [17]. However, all the cited solutions have been trained on
data from only one device model. Previous work has also revealed
that models trained in one environment have issues in adapting to
different environments [3]. Given the diversity of UWB devices on
the market, we deem necessary to evaluate the differences between
various UWB devices that might affect the performance of error
mitigation methods when applied on unknown devices.

3 DATA COLLECTION
In this section, we briefly present the experimental setup used to
collect the data. The dataset is open-source and a detailed descrip-
tion of all the locations in which we acquired measurements can
be found in the repository [6]. The goal of the measurement cam-
paign is to verify the consistency of CIRs and ranging errors from
different devices at the same locations.

We performed ranging measurements between pairs of devices
belonging to each brand in several locations at Tampere University.

(a) LOS (b) NLOS with half wall

(c) NLOS with bar refrigerator (d) NLOS with pillar

Fig. 1: Examples of environments from the measurement campaign.

Table 1: Device settings used in the experiments: the center frequency (𝑓𝑐 ), the
pulse bandwidth (𝐵𝑝 ), and the CIR sampling period (𝑇CIR

𝑠 ).

Device 𝑓𝑐 [GHz] 𝐵𝑝 [MHz] 𝑇CIR
𝑠 [ns]

DW3000 6.5 600 1
TDSR 4.3 620 0.061
3db 6.5 380 1

We targeted LOS and NLOS scenarios, for the latter using as obstruc-
tions walls, pillars, furniture, a TV screen, and room divider panels.
We performed measurements in nine different spaces which in-
cluded meeting rooms, offices, corridors, or cafeterias. Fig. 1 shows
some of the locations in which we acquired measurements.

We used three models of UWB devices from different developers:
the Qorvo (formerly Decawave) DW3000, the 3db Access 3DB6830C,
and the TDSR P452A. For brevity, we will further refer to the de-
vices, respectively, as DW3000 (or DW), 3db, and TDSR. Table 1
summarizes the characteristics and settings of the devices. DW3000
and 3db devices have the same center frequency of 6.5GHz but
different pulse bandwidths of 600MHz and 380MHz, respectively.
TDSR devices have a different center frequency of 4.3GHz but a
bandwidth close to the DW3000 (620MHz). DW3000 and 3db de-
vices are compliant with the IEEE 802.15.4z standard [1], while
TDSR devices implement a proprietary physical interface.

We took several measures to ensure that the devices from dif-
ferent manufacturers are placed at the same locations for each
measurement. First, we mounted the devices on tripods such that
the center of their antennas are aligned with respect to the tripod.
Second, we marked the locations of the tripod legs on the floor for
each test point. We estimate that, during the measurement process,
there can be a maximum error of 1 cm between the antenna centers
of two different devices.

At each test point, we kept a minimum recording time of 30 s in
order to capture the CIR variations over multiple measurements.
Because of some software limitations, in a part of the measurements
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the ranging update rate of DW3000 was lower than the one of 3db
and TDSR devices (2 s vs. approx. 300ms, respectively). In total,
our database contains approx. 30, 000 measurements with 3db and
TDSR devices each and 2, 800 measurements with Decawave. The
proportion of LOS and NLOS measurements is approx. 50/50.

We need to preprocess the CIRs in order to compare them. TDSR
and 3db devices provide the real part of the CIR, while the DW3000
stores the complex CIR. To unify the three representations, we use
the absolute value of the CIR. The TDSR CIRs have a sampling
period of 61 ps so we downsampled them to 1 ns using linear in-
terpolation. We also rescale the CIRs of each each device to have
amplitudes between [0, 1], taking into account the global minimum
and maximum of the entire dataset for each device. The rescaling
enables us to compare the CIR statistics from different devices and
does not change the statistics of CIRs from the same dataset (i.e.,
from one manufacturer).

4 CROSS-PLATFORM PERFORMANCE OF AN
ERROR PREDICTION MODEL

In this section, we want to highlight the danger in disregarding the
cross-platform compatibility of a centralized localization system
(LS). In many LSs, the anchors collect ranging measurements from a
user, then transmit them to a central server, which further processes
them and estimates the user’s location [8]. Let us consider that the
processing step consists of a NN which predicts the distance error1
based on the CIR and uses the prediction to refine the estimated
distance. Since the data collection process is difficult for one device,
let alone for multiple brands of devices, we can assume that the
NN was trained on a dataset acquired with only one type of device,
as it is frequently the case in the literature [5, 21, 24]. However, in
a public space, the system might have to deal with measurements
from users with different UWB devices. So we evaluate the possible
outcome if the NN naively tried to predict errors based on measure-
ments from devices that it was not trained on. We will compare the
performance of the model when applied on measurements from
the device used for training vs. on measurements from different
devices, both acquired at the same locations.

Let 𝐷 = {⟨𝒙𝑖 , 𝑦𝑖 ⟩}𝑁𝑖=1 be our training set, where 𝒙𝑖 is the feature
vector (a portion of the CIR) from the feature space X and 𝑦𝑖 is an
instance of the target variable 𝑌 (the distance error) defined on the
domain Y. Our goal is to learn the function 𝑓 : X → Y, that maps
a CIR to its distance error.

We use a fully connected network with three dense layers, each
using a rectified linear unit (ReLU) activation function plus an
additional fully connected layer. Each layer uses 256 filters. We
used the Focal-R loss function proposed in [23] for imbalanced
regression to deal with the long-tailed distribution of the target
variable. We used an input size of 40 CIR samples aligned to the
TOA, keeping 30 samples before and 10 samples after the TOA.
Although using more samples after the TOA might show benefits,
we preferred to use the minimum common CIR length among all
devices in order to avoid zero-padding shorter CIRs.

1Among the possible error mitigation strategies, we chose predicting the distance error
to better control the target variable distribution compared to directly predicting the
(correct) distance. NLOS detection is another popular method but, as per Section 5.1, it
often discards many useful measurements.
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Fig. 2: CDF of the original distance errors ( |𝑒𝑖 |) vs. the corrected errors ( |𝑒𝑖 −𝑒𝑖 |)
using models trained on the same or different device(s).

We remind that our dataset includes multiple measurements
performed with the three brands of devices from the same physical
location, from multiple locations inside the same room, and from
different rooms. To avoid overfitting, we include measurements
from different locations in the training, test, and validation sets. We
select at random one location for the test set, one for the validation
set, and assign the rest to the training set. We repeat this procedure
10 times, generating 10 different splits each time. The same split is
used for all devices, meaning that split number 𝑘 ∈ {1, ..., 10} from
each device contains exactly the same combinations of locations
and rooms inside the train, validation, and test sets. Therefore, if
a model𝑀 trained on the set 𝐷train

𝑘
(𝑑1) from device 𝑑1 achieves a

good performance on the test set 𝐷test
𝑘

(𝑑1) but a bad performance
on 𝐷test

𝑘
(𝑑2) from device 𝑑2, the difference in the performance

will be due to the hardware since 𝐷test
𝑘

(𝑑1) and 𝐷test
𝑘

(𝑑2) contain
measurements acquired at exactly the same locations.

We evaluate the initial distance errors and the errors after correc-
tion using the model’s predictions. Let 𝑒𝑖 = 𝑑𝑖 − 𝑑𝑖 be the distance
error of measurement 𝑖 ∈ {1, ..., 𝑁 }, i.e., the difference between the
measured distance 𝑑𝑖 and the true distance 𝑑𝑖 . The average initial
(absolute) error is 𝜇init =

∑𝑁
𝑖=1 |𝑒𝑖 |, where we aggregate the errors

over all test set splits. The average corrected (absolute) error is
𝜇corr =

∑𝑁
𝑖=1 |𝑒𝑖 − 𝑒𝑖 |, where 𝑒𝑖 is the error predicted by the model

for measurement 𝑖 . If the prediction perfectly matches the true error,
then the distance error is completely mitigated.

Fig. 2 shows the CDF of the original distance errors of all devices
vs. the corrected errors using the trained NNs. First, when using
the same device for training and testing, the error after correcting
the distance using the model’s prediction is 22–27 % smaller in the
mean and 31–42% smaller in the standard deviation compared to
the initial error. This shows that the model is able to generalize to
unknown locations from similar environments.

When applying the error prediction model on an unknown de-
vice, i.e., that the model was not trained on, the average corrected
error is always higher than the initial error, in most cases 3–8×
larger. This shows that models not trained on a particular device
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Fig. 3: (a) CDF of errors in LOS and NLOS for all devices. (b) Distribution of errors from selected locations with different obstacles.

might degrade the performance of a ranging system if we disre-
gard information about the platforms used for training and testing.
Therefore, the cross-platform compatibility of error mitigation tech-
niques in LSs should be taken into account from the design stage.

5 CHALLENGES
In this section, we analyze the collected data and highlight fourmain
challenges in obtaining cross-platform compatible UWB-based rang-
ing and localization systems.

5.1 Same Conditions, Different Distance Errors
for Different Devices

NLOS propagation is defined by the absence of a visual direct propa-
gation path between the TX and the RX. Obstructions can introduce
distance errors in UWB measurements in two ways. First, objects
can attenuate the signal traveling through the direct path, making
it indistinguishable from noise. When this happens, the device can
incorrectly estimate the TOA as corresponding to a later reflection
which has a higher amplitude than the direct path, causing a time
(and distance) error. Second, some obstacles can decrease the prop-
agation speed of signals traveling through them. In this case, the
direct signal will arrive later than it would have arrived through
air, introducing a distance error.

Fig. 3a shows the cumulative distribution function (CDF) of dis-
tance errors obtained with the three devices in LOS and NLOS
scenarios. Indeed, the errors obtained in NLOS scenarios are always
larger than those obtained in LOS. However, it is worth noting
that at least 50 % of NLOS measurements are under 15 cm, which is
usually deemed an acceptable ranging error [19]. Even if we devel-
oped a perfect NLOS detection algorithm, discarding or assigning
lower weights to measurements with small errors might decrease
the accuracy of the localization system, especially in cases with
few anchors available. Therefore, a binary LOS/NLOS classification
might not always be the best strategy for distance error mitigation.

Table 2 shows the median error of each device for all types
of obstacles considered here. While it is true that certain types of
obstacles (e.g., concretewalls, TV screen) generally introduce higher
errors than others (e.g., door) [11, 20], we noted that not all devices
yielded the same ranging errors even when placed under exactly the
same conditions. Fig. 3b shows the distribution of distance errors
(illustrated as box plots using Tukey’s definition) obtained by the
three devices at one location for several obstacles. There is a high

Table 2: Median distance errors with various obstacles.

Median distance error [m]

Device LOS TV
screen Fridge Door Pillar Half

wall

DW 0.06 0.45 0.31 0.10 0.57 0.08
TDSR 0.00 0.22 0.33 0.08 0.28 0.01
3db −0.02 1.89 0.00 −0.23 0.42 0.05

variability in the distance errors obtained by different devices at the
same location and, sometimes, a high spread in the errors obtained
by a single device at one location.

5.2 Same Conditions, Different TOAs
It is perhaps useful to explain the root cause of the differences in the
measured distance of various devices. Since the distance between
two devices is computed based on the (round-trip) time of flight
between the TX and the RX, any error in the TOA estimation will
also yield a distance error.

Although the TOA estimation algorithms used by the devices are
closed-source, the “Applications of the IEEE 802.15.4 standard” doc-
ument [9] describes some approaches that are likely followed by the
manufacturers. In LOS, the maximum peak of the CIR usually corre-
sponds to the direct path, so the (correct) TOA is straight-forward
to obtain. In NLOS, however, the direct path can be attenuated by
an obstruction and later paths, which correspond to longer travel
times, often have higher amplitudes. Therefore, the receiver needs
to also consider other peaks in the vicinity of the strongest one
as possible candidates for the first path. Popular approaches to
implement the back-search include a sequential linear cancellation
scheme [18] or threshold-based techniques [10]. Both techniques
are model-based and require assumptions about the propagation
conditions, such as the power ratio between two consecutive paths,
the number of MPCs to be subtracted, the maximum peak to earlier
peak ratio, or the peak to average power ratio. These methods per-
form well in LOS propagation but can lead to large errors in NLOS
scenarios due to the inability of the fixed parameters to adapt to
different propagation conditions.

We found that the most common reason for differences in rang-
ing accuracy between the devices is the different TOA estimation,
especially in the case of direct paths that have low amplitudes (close
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Fig. 4: The plots show stacked CIRs (with their amplitude encoded through the color depth) acquired during a series of measurements in which there was a TV
screen between two DW3000 devices. The circle markers represent the TOA estimated by the hardware and its color encodes the distance error of that measurement.
Fig. 4a shows a portion of the unaligned CIRs (i.e., as dumped in the buffer by the device), Fig. 4b shows the CIRs aligned to the TOA, and Fig. 4c shows the CIRs
aligned to the maximum value of the cross-correlation function computed between the first CIR and all of the following.

to the noise threshold). In our measurements, the “global” CIR shape
in NLOS propagation is relatively stable for a single device and it is
only the estimated TOA that fluctuates in some NLOS scenarios.

To illustrate this, let us consider a series of CIRs acquired with
one pair of devices from the same brand in a NLOS scenario with a
TV screen between the transmitter and the receiver. The devices
are left unmoved during the experiment. We use the DW3000 for
this example, but all devices present similar patterns. Fig. 4 shows
series of 30 CIRs stacked vertically with different alignments. The
MPCs from each CIR have color-encoded amplitudes and the TOA
is denoted by a circle marker. The color of the circle marker encodes
the distance error of the measurement corresponding to that CIR.

Fig. 4a shows the “raw” CIR alignment. In theory, the TOA can
occur at any sample in the internal buffer which stores the CIR.
In practice, we found that all DW3000 TOAs in our dataset occur
between samples 710 and 750 in a quasi-random manner. In Fig. 4a,
batches of consecutive CIRs appear to be shifted versions of each
other, but the pattern changes every 5–10 measurements. In this
representation, we cannot distinguish a clear pattern between CIRs
that lead to large errors or between the MPCs of consecutive CIRs.

In most works, the CIRs are cropped around the TOA identified
by the device, as in Fig. 4b. This provides a convenient representa-
tion for LOS/NLOS classification or for distance error prediction,
since CIRs are aligned to a common denominator and deviations
from it (e.g., the maximum peak occurring earlier or later in the
buffer, shorter or longer tails) can indicate different error magni-
tudes. Using this representation, we could believe that different CIR
shapes are correlated with different magnitudes of ranging errors.

Instead, if we align the CIRs according to the index which yields
the maximum cross-correlation value, i.e., according to their sim-
ilarity, we obtain Fig. 4c. In this figure, it is evident that, in fact,
consecutive CIRs acquired in the same scenario are almost identical.
What differs in this representation is the estimated TOA. The mea-
surements with the lowest distance errors have the earliest TOA.
However, because these early paths have amplitudes close to the
noise threshold, they are ignored in some measurements and the
TOA is identified as corresponding to a later reflection. Note that,
since the devices perform two-way ranging, they must identify the
correct TOA during both the poll and the response messages. In
the plot, we see only the CIRs of the initiator, but large errors can
also be caused by an incorrect TOA estimation at the responder.
Therefore, the devices can experience different errors even at the

same location because of the different SNR of the first path (which
is influenced by the hardware architecture and signal processing
steps) or because of the internal TOA estimation algorithm.

5.3 Same Conditions, Different CIRs for
Different Devices

At first sight, CIRs seem convenient for platform-independent learn-
ing problems, since they provide a representation of the paths
through which the signal travels from the TX to the RX. Therefore,
we would perhaps expect CIRs acquired by different devices at the
same location to be similar. However, we will see why this is not
the case. We focus on two main differences: the effective duration
and the shape of CIRs.

5.3.1 Effective duration. One crucial difference between CIRs ac-
quired by different devices is their length. Let us call the effective
duration of the CIR the portion starting from the estimated TOA
until the end of buffer in which CIRs are stored, since this is usu-
ally the portion of most interest. The buffers have a length of 1016
samples for DW3000, 1632 samples for TDSR, and 256 samples for
3db. However, because we downsampled the TDSR from 61 ps to
1 ns, they will have a shorter (effective) duration than the other
devices. In practice, we found that TDSR devices capture, on aver-
age, the paths which arrive within 17 ns of the TOA. In comparison,
DW3000 and 3db devices have an average effective length of 278 ns
and 125 ns, respectively. This difference is evident in Fig. 5, which
shows an example of CIRs acquired with the three devices at the
same location in one LOS scenario.

Different effective CIR lengths can cause issues in NNs which
receive as input the raw CIR from different platforms. If the net-
works are designed to work on CIRs with a pre-defined length,
shorter CIRs must be padded until the desired length, which can
change the input sample distribution and the model’s performance
on those inputs. Alternatively, recursive NNs can be used on inputs
of different lengths.

5.3.2 CIR shape. The received signal can be modeled as [13]:

𝑟 (𝑡) = 𝑠 (𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡), (1)

where 𝑠 (𝑡) is the transmitted pulse which is convolved with the CIR
ℎ(𝑡). The signal 𝑛(𝑡) represents sensor or environmental noise (so
not related to the propagation path), usually modeled as zero-mean
white Gaussian noise.

13
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TheCIR can be decomposed into𝐾 multipath components (MPCs)
with delays 𝜏𝑘 , 𝑘 = 1, ..., 𝐾 and amplitudes 𝛼𝑘 and a stochastic pro-
cess 𝜈 (𝑡) which results in diffuse multipath caused by scattering
and diffraction:

ℎ(𝑡) =
𝐾∑︁
𝑘=1

𝛼𝑘𝛿 (𝑡 − 𝜏𝑘 ) + 𝜈 (𝑡). (2)

The estimated CIR, denoted by ℎ̂(𝑡), is obtained by decorrelating
the received signal 𝑟 (𝑡) with the known template pulse 𝑠 (𝑡).

Because we acquired measurements with the three platforms at
the same location, we would perhaps expect to see MPCs with the
same delays 𝜏𝑘 in their CIRs. However, because the devices have
different center frequencies and/or pulse bandwidths, there will be
different constructive or destructive interference patterns reflected
in 𝜈 (𝑡) or even in the observed delays of the main MPCs 𝜏𝑘 . In
addition, the amplitudes 𝛼𝑘 are influenced by the different front-end
circuits. The various signal processing components (e.g., low-noise
amplifiers, mixers, automatic gain controls, analog filters, analog-
to-digital converters) and digital processing can introduce different
linear and/or non-linear distortions depending on the architecture.
Therefore, even if the channel conditions and environment are the
same, we will, in fact, see different patterns in the CIRs acquired by
different platforms.

To characterize CIRs acquired at the same location with dif-
ferent devices, we look at the average number of main peaks (or
MPCs) and the average delay between the first and the last sig-
nificant peaks, which indicate whether we can identify the same
main MPCs in all CIRs and how long it takes until their amplitudes
decay to an insignificant level. We also compute the energy, mean
excess delay (MED), and root-mean square (RMS) delay spread of
the CIRs, which have been previously used to characterize CIRs
in LOS/NLOS detection problems [17]. The MED and RMS delay
spread are, respectively, the first and second moments of the power
delay profile of the signal and characterize its delay statistics. The
RMS delay spread captures the temporal dispersion of the signal’s
energy.

We search for the number of significant MPCs in each CIR, which
we define as the peaks that exceed 25 % of the maximum amplitude
of the CIR with a minimum time separation between peaks of 2 ns
(to avoid detecting peaks belonging to the same path). We compute
the average number of significant peaks (𝑁𝑝 ) and the average time
delay between the first and the last significant peak (𝜇𝛿 ). The peak
search is performed on the raw CIR, while the energy, MED, and
RMS delay spread are computed on the CIR starting from the TOA
until the end of the buffer, to mitigate the influence of the TOA
index in the raw CIR buffer on the CIR statistics.

Fig. 5 shows the most significant peaks in a triplet of CIRs ac-
quired at the same location with different devices and Table 3 shows
the average CIR statistics over all locations. 3db CIRs have more
significant MPCs than the other two devices and their amplitudes
take longer to decay, reflected in a higher 𝜇𝛿 and energy. TDSR
CIRs have the shortest duration and therefore capture the fewest
significant peaks, so they have the lowest energy, MED, and RMS
delay spread.

In the literature, a low signal energy and high delay statistics
have been associated with signal attenuation occurring in NLOS
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Fig. 5: CIRs and their main peaks acquired with each device at the same
location in a LOS scenario.

Table 3: Statistics of the CIRs: number of significant paths (𝑁𝑝 ), delay between
the first and the last significant path (𝜇𝛿 ), energy (𝐸, quantized), mean excess
delay (𝜏MED), and RMS delay spread (𝜏RMS).

Device 𝑁𝑝 𝜇𝛿 [ns] 𝐸 [-] 𝜏MED [ns] 𝜏RMS [ns]

DW3000 3 11.2 2.4 13.5 21.7
TDSR 2 5.3 1.6 8.2 3.0
3db 5 24.4 8.5 13.3 13.8

propagation [17]. However, if CIRs acquired in the same conditions
with different brands of devices have, on average, different statistics,
these can introduce issues in error mitigation methods customized
for one device but applied on different brands of devices.

5.4 Different Devices, Different Diagnostics
Since the CIRs are long (256–1632 samples for the devices we used),
for some applications it can be too time consuming and computa-
tionally expensive to process them. Therefore, some works instead
propose using other diagnostics provided by the devices (for in-
stance, power or noise figures) for ranging/localization error miti-
gation [21]. However, this can pose issues for platform-independent
localization systems because not all devices provide the same met-
rics and often not in the same units of measurement.

For instance, the DW3000 provides the power, maximum am-
plitude, and phase of arrival (POA) computed on the preamble for
regular ranging and, additionally, the power and POA computed
on the scrambled timestamp sequence for the secure ranging mode.
The manufacturer provides formulas for converting the power to
dBm [15]. TDSR devices provide the maximum value in the leading
edge (LE) window of the received CIR and the noise level. However,
the unit of measurement of these parameters is not specified in
the documentation [14], so it is not clear if these parameters could
be compared, for instance, with the ones of the DW3000 chipset.
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TDSR devices also provide the noise amplitude and a coarse and a
precise estimate of the range, of the distance error, and of the tag’s
velocity. The 3db chip provides the peak and the LE amplitudes (but
not expressed in dBm) and other additional diagnostics [2].

Given the different diagnostics provided by the devices and the
lack of a commonmeasurement unit for the power and noise figures,
it would be difficult to use this kind of information in a platform-
independent UWB localization system. Therefore, the manufactur-
ers should invest more effort to provide unified metrics for addi-
tional diagnostics.

6 DISCUSSION
As we showed in Section 4, error mitigation techniques that dis-
regard the hardware with which incoming measurements were
acquired can actually degrade the final accuracy of the system for
devices that the systemwas not customized for. Therefore, error mit-
igation techniques developed for only one UWB hardware should
implement a fallback plan to avoid degrading the accuracy of mea-
surements acquired by other devices. An alternative that requires
further research is to develop error mitigation solutions that can
work across multiple platforms. Although different platforms have
different CIRs and ranging errors under the same conditions, there
is a common reason for all errors: the incorrect TOA estimation.
Therefore, there might exist a set of device-agnostic CIR features
related to the estimated vs. the correct TOA that could yield the cor-
rect distance (or TOA) errors across multiple devices. However, even
if a device-agnostic set of features were found for a set of devices,
it is unlikely to perform equally well on an unknown hardware.

An alternative to centralized solutions is to implement error
correction only at the edge and use models customized for each
target device. However, in this case, more work is needed to create
environment-independent models [3], since it is unreasonable to
collect data from every new location with every device on the
market. Data-driven TOA estimation shows promising results [5]
but it must be lightweight enough to be implemented on-chip and
fast enough to minimize clock drift errors.

7 CONCLUSIONS
In this paper, we provided an overview of the challenges faced
in obtaining platform-independent UWB ranging or localization
systems. We derived our observations from a database of measure-
ments acquired with three brands of UWB devices at exactly the
same locations. We evaluated the differences in their ranging er-
rors, CIRs, and diagnostics. We show that applying error mitigation
models on devices not included in the training phase might result
in a severe degradation of the ranging accuracy.

The cross-platform compatibility of error mitigation methods
should not be taken for granted; instead, ranging and localization
systems deployed in environments where users can have different
UWB platforms must take into account cross-platform compatibil-
ity from the design phase. Future research should focus more on
learning methods that can perform equally well on a wide range of
devices or that degrade gracefully in the presence of an unknown
device. Alternatively, error mitigation techniques could be moved
to the edge and customized on the target device with the caveat
that they must be environment-independent.
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