
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

Towards Wifi Mobility without Fast Handover
Andrei Croitoru, Dragoş Niculescu, and Costin Raiciu, University Politehnica of Bucharest

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/croitoru

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  219

Towards WiFi Mobility without Fast Handover

Andrei Croitoru, Dragos, Niculescu, Costin Raiciu,

University Politehnica of Bucharest

Abstract

WiFi is emerging as the preferred connectivity solution

for mobile clients because of its low power consump-

tion and high capacity. Dense urban WiFi deployments

cover entire central areas, but the one thing missing is a

seamless mobile experience. Mobility in WiFi has tra-

ditionally pursued fast handover, but we argue that this

is the wrong goal to begin with. Instead, we propose

that mobile clients should connect to all the access points

they see, and split traffic over them with the newly de-

ployed MPTCP protocol. We let a mobile connect to

multiple APs on the same channel, or on different chan-

nels, and show via detailed experiments and simulation

that this solution greatly enhances capacity and reliabil-

ity of TCP connections straight away for certain flavors

of WiFi a/b/g. We also find there are situations where

connecting to multiple APs severely decreases through-

put, and propose a series of client-side changes that make

this solution robust across a wide range of scenarios.

1 Introduction

Mobile traffic has been growing tremendously to the

point where it places great stress on cellular network ca-

pacity, and offloading traffic to the ubiquitous WiFi de-

ployments has long been touted as the solution. In dense

urban areas, offloading between WiFi and cellular may

not be needed at all: WiFi is always available because

of uncoordinated deployments by many parties, and is

preferable because it offers higher bandwidth and smaller

energy consumption.

To improve the mobility experience, many solutions

have been proposed that coordinate Access Points [1, 2];

however, real deployments are fragmented between mul-

tiple operators, which together cover entire central ar-

eas. This is the case, for instance, in pedestrian areas

of the Bucharest city center with three different hotspot

providers active. In this paper we address the problem

of roaming through mixed, uncoordinated deployments

of APs, without changes to the deployed infrastructure.

We assume clients have access to multiple operators (per-

haps due to roaming arrangements between operators),

or to home-users’ APs(also uncoordinated) as proposed

by Fon[3]. Recent surveys [4, 5] show that in cities one

can find tens of networks on most popular channels.

Traditional WiFi mobility techniques, as with all other

L2 mobility mechanisms are based on the concept of fast

handover: when a mobile client exits the coverage area

of one Access Point (AP), it should very quickly find

another AP to connect to, and quickly associate to it.

There is a great wealth of research into optimizing fast

handover including scanning in advance, re-using IP ad-

dresses to avoid DHCP, synchronizing APs via a back-

plane protocol, even the using additional cards[6] to re-

duce the association delay - see § 2 for more details. We

think this is the wrong approach, for many reasons:

1. To start the handover mechanism, a client has to lose

connectivity to the AP, or break-before-make

2. There is no standard way to decide which of the

many APs to associate with for best performance

3. Once a decision is made, there is no way to dynam-

ically adjust to changes in signal strength or load

We conjecture that the emerging standard of Multi-

path TCP (MPTCP) enables radical changes in how we

use WiFi: use of multiple APs becomes natural, whether

on the same channel or different ones, and the perennial

handoff problem at layer 2 gets handled at layer 4 al-

lowing for a clean, technology independent, end-to-end

solution for mobility. In this paper we test the follow-

ing hypothesis: all WiFi clients should continuously con-

nect to several access points in their vicinity for better

throughput and connectivity.

We carefully analyze the performance experienced by

a mobile client locked into using a single WiFi channel

and associating automatically to all the APs it sees, with-

out using any explicit layer 2 handover. We run a mix of

testbed experiments to test a few key usecases and sim-

ulations to analyze the generality of our testbed findings

across a wide range of parameters and scenarios. We find

that, surprisingly, the performance of this simple solution

is very good out of the box for a wide range of scenar-

ios and for many WiFi flavors (802.11a, b, g): a WiFi

client connecting to all visible APs will get close to the

maximum achievable throughput. We discuss in detail

the reasons for this performance, namely the WiFi MAC

behavior and its positive interaction with MPTCP. In par-

ticular, the hidden terminal problem gets a constructive

solution with MPTCP, as subflows of a connection take

turns on the medium instead of competing destructively.

We also find that performance is not always good for

certain combination of standards (e.g. 802.11n and g),

and for some rate control algorithms: in such cases the

1

220  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

client downloads too much data from APs far away, re-

ducing total throughput. To address these issues, we de-

sign, implement and test: (a) a novel client side estima-

tion technique that allows the client to accurately esti-

mate the efficiency of the downlink from an AP, and b)

a principled client-side algorithm that uses ECN mark-

ing to help the MPTCP congestion controller to find the

most efficient APs. Finally, we implemented an adaptive

channel switch procedure that allows harvesting capacity

from APs on different channels.

We ran several mobility experiments in our building,

comparing our proposal to using regular TCP connected

to the individual APs. The results show a truly mobile

experience: our client’s throughput closely tracks that

of a TCP client connected to the best AP at any given

location. We also show that striping traffic across APs

naturally and fairly harvests bandwidth in contention sit-

uations with hidden and exposed terminals.

2 Background and Related Work

Fast Handover. The 802.11 standards were originally

designed for uncoordinated deployments, and are not

particularly amenable for high speed handovers. The

handover is performed in three phases: scanning, authen-

tication, and association. The first phase has been empir-

ically shown [7] to be 95% of the handover time, and has

been the target for most optimizations in the literature.

One approach to reduce the scanning delay is to probe

for nearby APs before the mobile loses its current link.

SyncScan [8] goes off channel periodically to perform

the scan, so that the mobile has permanent knowledge

about all APs on all channels. DeuceScan [9] is a prescan

approach that uses a spatiotemporal graph to find the next

AP. Mishra et al. [10] uses neighbor graphs to temporar-

ily capture the topology around the mobile and speed up

the context transfer between APs using IAPP. When ad-

ditional hardware is available, [6] delegates the task of

continuous probing to a second card.

For enterprise networks there are several opportuni-

ties to optimize the handover process. One is the use

of a wireless controller that has a global view of all the

APs and the associated mobiles in the entire network.

This architecture is supported by all major vendors, be-

cause it offers many other advantages in addition to con-

trolled association and guided handover. Another avenue

for better handover is to eliminate it altogether, with the

adoption of a single channel architecture [11] where mul-

tiple coordinated APs “pose” as a single AP by sharing

the MAC, an architecture currently in use by Meru, Ex-

tricom and Ubiquiti. In these architectures, the wireless

controller routes the traffic to and from the appropriate

AP, so that a mobile never enters the handover process.

802.11r [12] optimizes the last two components of

the handover ensuring that the authentication processes

and encryption keys are established before a roam takes

place. Authentication occurs only once, when a client

enters the mobility domain. Subsequent roams within

a mobility domain use cryptographic material derived

from the initial authentication, decreasing roam times

and reducing load on back-end authentication servers.

802.11k [13] provides for roaming assistance from the

AP: when it perceives the mobile moving away, it sends

a notification and possibly a site report with other AP op-

tions to maintain connectivity. Finally, a survey of han-

dover schemes [14] mentions several other efforts in this

direction and classifies them based on the incurred over-

head, necessity of changes (mobile, AP, or both), com-

patibility with standards, and complexity.

All these layer 2 solutions do improve handover per-

formance, but their availability depends on widespread

support in APs and clients. Performing a handover is a

decision that locks the client into one AP for a certain pe-

riod of time, which leads to poor performance when truly

mobile: there is no good way of predicting the through-

put the client will obtain from one AP in the very near

future. By using a transport layer mobility solution (see

also [15, 16]), we sidestep the need to upgrade all AP

and client hardware for mobility and, more importantly,

allow a client to utilize multiple APs at the same time.

Channel Switch [17, 18, 19, 20] has been used to al-

low round robin access to APs on different frequencies.

The client maintains association to each AP, and uses an

IP address in that subnet. All these schemes rely on a

client’s powersave mode to have an AP buffer packets

while the client is exchanging data with other APs on

other channels. We also used this method in our imple-

mentation (see section 7). Spider [21] also investigates

multiple associations on the same and on different chan-

nels, and concludes that for high speed, sticking to one

channel yields better results.

AP selection is the problem of choosing the right AP

based on signal strength, available wireless bandwidth,

end-to-end bandwidth, RTT[22], current load. [23] es-

timates the wireless bandwidth that the client would re-

ceive by using timing of beacon frames. [24] shows that

WLAN multi-homing is desirable from several angles:

pricing, efficiency, fairness. [25] also uses a game theo-

retical approach to explore AP association strategies de-

pending on delay probing. [26] proposes collaborative

sharing of a fraction of an APs bandwidth, which en-

ables better centralized load balancing. Divert [1] is a

heuristic that selects the best AP for downlink and up-

link, exploiting physical path diversity. Similarly, MRD

[27] also exploits path diversity, but only for uplinks.

MPTCP is a recently standardized extension of TCP

[28] that has been implemented by Apple in the IOS 7

mobile operating system; more mobile phone manufac-

2

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  221

Figure 1: Instead of fast handovers, we propose that wireless

clients associate to all the APs in range and use MPTCP to

spread traffic across them.

turers are expected to follow suit.

The idea of associating to multiple APs for better ro-

bustness and throughput is not new [21, 29, 18]. What is

missing is the ability of unmodified applications to ben-

efit from multiple APs, as TCP uses a single interface by

default. Multipath TCP enables unmodified apps to use

these interfaces.

Our contribution in this paper is to study and optimize

the interaction between the WiFi MAC and Multipath

TCP. In contrast to previous works that focus mostly on

channel switching, we examine carefully the case where

the client is associated to multiple APs residing on the

same channel. Our solution departs from the “one AP at

a time” philosophy in existing works, allowing multiple

APs to compete for the medium at packet level. Compe-

tition provides a number of features including elegantly

solving hidden terminal issues, fast reaction to changes

in channel conditions and throughput improvements even

in certain static cases.

3 Towards an optimal solution for WiFi

Mobility

Consider a wireless client that can associate to three dis-

tinct APs, as shown in Figure 1. Which one should the

client pick and associate to? Prior work has shown that

using signal strength is not a good indicator of future

performance, so the client may actively probe or pas-

sively measure [23] all three APs briefly before deciding

on picking one of them. However, this initially optimal

choice may quickly become suboptimal because of mul-

tiple reasons outside the client’s control: 1. the client

may move; 2. other clients may use the medium, affect-

ing this client’s throughput and his choice; 3. the wireless

channel to the chosen AP may have temporary short-term

fluctuations, affecting its capacity (see evaluation in sec-

tion 6 for an example).

The combination of these factors is impossible to pre-

dict in practice, and the best AP for any given client

changes not only in mobility scenarios, but even when

the client is stationary. All existing solutions that connect

to a single AP are forced to be conservative, because fluc-

tuations (flopping between APs) can affect performance;

thus they all tend to stick to their choice for some time.

We observe that the emergence of MPTCP enables a

radically different approach to WiFi mobility: instead of

using only one AP at a time and doing handovers, mo-

bile clients should connect to all APs at any given

time. The solution is conceptually very simple, and is

shown in Figure 1: we have the client associate to mul-

tiple APs, obtaining one IP address from each, and then

rely on MPTCP to spread data across all the APs, with

one subflow per AP. As the mobile moves, new subflows

are added for new APs, while old ones expire as the mo-

bile loses association to remote APs.

How should traffic be distributed over the different

APs? As the client has a single wireless interface, it can

only receive packets from one AP at a time, even if it is

associated to multiple APs. Should the client spend an

equal amount of time receiving data via each AP? This

policy is optimal only when all APs offer equal through-

put. In practice, one AP will offer the best performance,

thus it is preferable for the client to transfer most data via

this access point. However, all other feasible APs should

be used to send probe traffic to ensure that the client can

detect when conditions change and adapt quickly. While

simple in principle, the key to this solution is understand-

ing the interactions between MPTCP and the WiFi MAC.

There are two high-level cases that need to be covered:

APs on the same wireless channel. There are three

non-overlapping channels in 2.4GHz and more in 5GHz,

but newer standards including 802.11n and 802.11ac al-

low bonding 2-8 of these 20Mhz channels to increase

client capacity; the result is a smaller number of usable

non-overlapping bonded channels (maximum three with

802.11ac, depending on the country).

If we disregard WiFi interference between APs, the

theoretically optimal mobility solution is to always con-

nect to every visible AP, and let MPTCP handle load bal-

ancing at the transport layer: if an AP has poor signal

strength, its loss rate will be higher (because of lower

bandwidth and similar RTTs) and the MPTCP conges-

tion controller will simply migrate most of the traffic to

the APs with better connectivity to the client. This way,

handover delays are eliminated and the mobile enjoys

continuous connectivity. But interference can be a major

issue, and will be explored in depth in the next section.

APs on different wireless channels. In this case the

mobile client must dynamically switch channels while

associated to multiple APs, giving each AP the impres-

sion it is sleeping when in fact it is going on a different

channel. Channel switching has already been proposed

as a technique to aggregate AP backhaul capacity by a

number of works including FatVAP [18] and Juggler[20].

We discuss the interactions between MPTCP and chan-

nel switching in section 7.

3

222  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 [%

]

Position

UDP1
UDP2

UDP1+2
MPTCP1+2

(a) Experimental results with 802.11a,

6Mbps: UDP flows systematically collide,

while MPTCP subflows take turns on the

medium.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 [%

]

Distance [m]

UDP1
UDP2

UDP1+2
TCP1+2

(b) ns2 simulation of the same situation

in 2a. In the middle region MPTCP ex-

hibits higher variability because one sub-

flow starves the other.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pa
ck

et
s

lo
st

 (%
)

Number of retransmissions

Subflow 1
Subflow 2

(c) The subflow sending packets infre-

quently experiences a much higher loss

rate. This makes it hard for a (MP)TCP

flow to escape its slowstart.

Figure 2: Hidden terminal (HT) experiments: using Multipath TCP results in very good throughput because one

subflow monopolizes the air, while the other is starved.

4 Single-channel mobility

We implemented a prototype client that is locked on a

single channel and continuously listens for beacons of

known APs; when a new AP is found, the client creates a

new virtual wireless interface1 and associates to the AP,

opening a new MPTCP subflow via the new AP. We ran

this code on our 802.11a/b/g/n testbed without external

interference, as well as in simulation to understand the

interactions that can arise due to interference between

different APs, and the extent to which this solution ap-

proximates the optimal one.

4.1 Hidden terminal experiments

The first case we test is a pathological one: consider two

APs that are outside CS range and the MPTCP client con-

nects to both. Lack of CS means the CSMA mechanism

does not function and the frames coming from the two

APs will collide at the client. In fact, each AP is a hid-

den terminal for the other.

To run this experiment, we reduced the power of our

two APs until they went out of CS, with the client still

able to achieve full throughput to at least one AP at all

test locations. Then, we place the client close to one AP

and move it towards the other AP in discrete steps and

measure the throughput for UDP and TCP via either AP

(the status quo) as well as MPTCP. As shown in figure

2a, the graph exhibits three distinct areas. In the two ar-

eas close to either AP, neither UDP nor TCP throughput

is affected: here the capture effect[30] of WiFi predomi-

nates, as packets from the closest AP are much stronger,

and the effect of a collision is very small—the client will

just decode the stronger packet as if no collision took

place, and the subflow via the furthest AP will reduce its

rate to almost zero because of repeated packet losses.

1Virtual interfaces are a standard Linux kernel feature: each

interface has individual network settings (IP, netmask), MAC set-

tings(association, retries), but share the PHY settings(channel, CS).

The area in the middle is more interesting. As we

expected, the combined UDP throughput of two simul-

taneous iperf sessions is greatly diminished by the hid-

den terminal situation. However, by running two simul-

taneous MPTCP subflows, the combined throughput is

surprisingly good. Repeated runs showed this result is

robust, and we also confirmed this via ns2 simulation

(Figure 2b). MPTCP connection statistics show that the

high-level reason for the high throughput is that traffic

is flowing entirely over one of the two subflows, while

the other one is starved, experiencing repeated timeouts.

This would suggest that the starved subflow is experienc-

ing much higher loss rates, which would explain why it

never gets off the ground properly.

To understand the reason of this behavior, we used

simulation to measure the loss probability of the two

subflows when contending for the medium. When sub-

flow 1 is sending at full rate, subflow 2 sends a single

packet which collides with a packet of subflow 1. The

WiFi MACs will then backoff repeatedly until the max

retransmission count has been reached, or until one or

both packets are delivered. We run the simulation for a

long time to experience many such episodes, and show

the percentage of episodes each subflow experiences a

loss in Fig.2c as a function of the retry count. When

few retransmissions are allowed, both subflows lose a

packet each when a collision happens, but the effect of

the loss is dramatic for the second subflow pushing it to

another timeout. As we allow more retransmissions, the

loss probability is reduced dramatically: the second sub-

flow loses around 40% of its packets if 6 or more retrans-

missions are allowed. The reason for the flattening of the

line at 40% is the fact that the first sender always has

packets to send, and when subflow 1 wins the contention

for the first packet, its second packet will start fresh and

again collide with the retransmissions from the second

subflow, further reducing its delivery ratio. This also ex-

plains why subflow 1 experiences no losses after six re-

transmissions: either it wins the contention immediately,

or it succeeds just after the second subflow delivers its

4

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  223

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 [%

]

Position

TCP via AP1
TCP via AP2

MPTCP over AP1+2

(a) Throughput of a client moving be-

tween AP1 and AP2: the MAC favors

the sender with the better channel. Max

throughput is 22Mbps.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9

Pa
ck

et
 d

el
iv

er
y

ra
tio

 [%
]

Time [s]

Channel to AP1
Channel to AP2

(b) A fixed node has channels with a raw

PDR≈50% to each AP. The two channels

are weakly correlated.

0
10
20
30
40
50
60
70
80
90

100

1 10

C
D

F
 [
%

]

Packet interarrival time[ms]

AP1
AP2

AP1+2

shorter tail = fewer retries

(c) Packet inter-arrival rate exhibits a

longer tail when a single AP is used.

When both APs are sending, the tail is

much shorter.

Figure 3: Carrier sense experiments: the client using MPTCP gets the throughput of the best TCP connection when

close to either AP, and better throughput when in-between.

packet. In effect, we are witnessing a capture effect at

the MPTCP level triggered by the interaction with the

WiFi MAC. This behavior is ideal for the MPTCP client.

4.2 Carrier-sense experiments

The most common case is when a client connects to two

APs on the same channel that are within carrier sense

range of each other, so that the WiFi MAC will prevent

both APs sending simultaneously. The mobile associates

to both APs and again we move the client from one AP

to the other in discrete steps. The performance of our

MPTCP client in this case strongly depends on the rate

control algorithm employed by the AP, and we explore a

number of these to understand their effects.

First, we have our Linux APs use 802.11a and run the

default Minstrel rate selection algorithm. The results are

given in Fig. 3a, and they show that the throughput of the

MPTCP client connected to both APs is as high as the

maximum offered by any of the two APs. The reasons

for this behavior are not obvious.

CASE I: In-between APs the client obtains slightly

more throughput (10%) by using both APs than if we

were using either AP in isolation. The fundamental rea-

son lies at the physical layer: due to fading effects, in-

dividual channel quality varies quickly over time, de-

spite both channels having a roughly equal longer-term

capacity. The wide variability and burstiness of losses

and successes in frame delivery is well documented in

literature [31, 1]. To test this hypothesis, we simultane-

ously sent a low rate broadcast stream from each AP and

measured their delivery ratios at the client. As broadcast

packets are never retried, their delivery ratio captures the

channel quality accurately; the low packet rate is used

to ensure the two APs don’t fight each other over the

airtime, while still allowing us to probe both channels

concurrently. The instantaneous packet delivery ratios

computed with a moving window are shown in Fig. 3b,

confirming that the two channels are largely independent.

The 802.11 MAC naturally exploits physical channel

diversity: the sender that sees a better channel will de-

crease its contention window, and will be advantaged

even more over the sender with a weaker channel. This

behavior is experimentally verified by previous work

[32] with several clients and bidirectional traffic to/from

the APs. For our client downloading from two APs,

when one has a slightly worse channel, it will lose a

frame and double its contention window before retrying,

leaving the other AP to better utilize the channel.

To validate our hypothesis, we analyzed inter-arrival

times between packets for the client using either AP or

both at the same time, and plotted the CDF in Figure 3c.

The data shows that most packets arrive 1ms apart, and

that AP1 prefers a higher PHY rate (24Mbps) while AP2

prefers a lower PHY rate (18Mbps) when used alone. Us-

ing both APs leads to inter-arrival times in between the

two individual curves for most packets. The crucial dif-

ference is in the tail of the distribution, where using both

APs results in fewer retries per packet. When one AP

experiences repeated timeouts, the other AP will send a

packet, thus reducing the tail.

The optimal AP changes at timescales of seconds, and

a realistic way of harvesting this capacity is by connect-

ing to multiple APs. Further experiments with 802.11n

and simulations have shown this behavior is robust: even

when the APs offer similar long-term throughput, a client

connected to multiple APs will manage to harvest 10-

20% more throughput, consistent with results in [1].

CASE II: One AP dominates. Consider now the cases

when the client is closer to one AP; in such cases the

most efficient use of airtime is to use only the AP that’s

closest to the client. In this case, the throughput of a

client connected to all APs strongly depends on the rate

selection algorithms used.

In the experiment in Fig.3a minstrel favors higher

rates even at low signal strengths (with lower frame

delivery rate), leading to more retries per packet for

the far away AP. Each retry imposes a longer back-

off time on the transmitter, allowing the AP with bet-

ter signal strength to win the contention more often and

5

224  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

thus to send more packets; this explains the near-optimal

throughput enjoyed by the MPTCP client near either AP.

This behavior is strictly enforced by the L2 conditions,

and we verified that the choice of TCP congestion con-

trol has no effect on the distribution of packets over the

two paths; the same results were obtained with UDP.

We also verified in the simulator that when two

senders use the same rate, the MAC preference for the

better sender holds regardless of the maximum number

of retransmissions allowed (0 - 10). What happens when

the AP farthest from the client sends using lower rates,

thus reducing its frame loss rate? Simulations showed

that the effect on total throughput can be drastic: the

client connecting to both APs can receive less then half

of the throughput it would get via the best AP. This is be-

cause lower rates give the farthest AP and the closest one

similar loss rates and thus chances of winning the con-

tention for the medium. However, packets sent at lower

bitrate occupy more airtime, thus decreasing the through-

put experienced by the client [33].

Is this case likely to appear in practice? We ran the

same experiment on APs and clients running 802.11n

in the 5GHz frequency band. When the client is close

to one of the APs, the results differed from 802.11a/g:

the throughput obtained with MPTCP was only approxi-

mately half the throughput obtainable via the closest AP.

Monitoring the PHY bitrates used by the transmitters

shows that minstrel ht (the rate control algorithm Linux

uses for 802.11n) differs from minstrel significantly: in-

stead of using aggressive bitrates and many retransmis-

sions, minstrel ht chooses the rates to ensure maximum

delivery probability of packets. The block ACK feature

of 802.11n is likely the main factor in this decision, as the

loss notification now arrives at the sender after a whole

block of frames has been transmitted (as much as 20):

the sender can’t afford to aggressively use high bitrates

because feedback is scarce.

This issue is not limited to 802.11n: any rate control

algorithm that offers packet-level fairness between mul-

tiple senders in CS range greatly harms the combined

throughput achievable by MPTCP with multiple APs.

In summary, a client that associates to multiple APs

and spreads traffic over them with MPTCP will receive

close-to-optimal performance in a hidden-terminal situ-

ation, but in CS performance is strongly dependent on

the rate adaptation algorithms employed by the APs, and

these are outside the client’s control.

5 Making MPTCP and the WiFi MAC play

nicely together

There are two reasons for the suboptimal interaction be-

tween the 802.11 MAC and MPTCP: for one, the loss

rate perceived by MPTCP on each subflow does not re-

flect the efficiency of the AP routing that subflow. In

cases where packet-level fairness exists between APs,

MPTCP sees the same loss rate on all subflows, and is

unable to properly balance the load. Secondly, when

subflows have shared bottlenecks, MPTCP assumes that

sending traffic via the subflows will not affect the bot-

tleneck capacity. This is not the case in single-channel

WiFi setups, where sending traffic via a faraway AP will

decrease the total throughput.

To fix these problems, it is simplest to stop using APs

that decrease total throughput, but this comes at the ex-

pense of poorer performance when mobile. A more

sensible option is on-off: receive data from a single AP

at any point in time while all the others are shut-off, and

periodically cycle through all available APs. on-off has

already been proposed in the context of channel switch-

ing [18, 20, 34] and we use it in Section 7 to cope with

APs on different channels. In our context, on-off can be

implemented either by using the MP BACKUP mecha-

nism in MPTCP [28] which allows prioritizing subflows,

or by relying on WiFi power save mode. It seems natural

to extend the on-off solution for single channel APs as in

[34], since there is no real cost of “switching” between

APs on the same channel, beyond a couple of control

messages: there is no wasted airtime. However, there are

also a few fundamental drawbacks:

• Switching between APs increases packet delay and

jitter, which affects interactive traffic. For instance,

with a 200ms duty cycle, many packets experience

RTTs that are 200ms longer that the path RTT.

• Gains from channel independence are lost.

• When multiple clients make independent decisions

to switch between APs, they may end-up switching

at the same time to the same AP, wasting capacity

available elsewhere. Simulation results in §7 that

show around 35% of the available capacity can be

wasted in such cases.

Clients can monitor local PHY/MAC conditions accu-

rately, but have a limited view of end-to-end downlink

capacity available via an AP, because end-to-end loss

rate and RTT are only available at the TCP sender. The

sender, on the other hand, uses inaccurate metrics that

are influenced by the WiFi behavior. For these reasons,

our solution allows different APs to simultaneously send

to the same client, while allowing the MPTCP conges-

tion controller to direct traffic to the most efficient APs.

In particular, our MPTCP client uses local WiFi informa-

tion to find out which APs are preferable, and relays this

information to the sender as additional loss notification.

One non work-conserving way to relay this information

is to have the client drop a percentage of packets. Instead,

we use explicit congestion notification(ECN) to tell the

server to avoid, if possible, the bad APs.

6

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  225

Our solution has two distinct parts discussed next: a

novel client-side passive measurement technique that al-

lows the client to accurately estimate the efficiency of

each AP, and an algorithm that decides the amount of

ECN marks that a client can set on a subflow to enable

efficient airtime usage.

5.1 Measuring AP Efficiency

When deciding which AP it should prefer, the client

needs to estimate the time Ti it takes on average for

AP i to successfully send a packet, assuming the AP is

alone in accessing the wireless medium. This metric pur-

posely ignores the effect other WiFi clients may have on

the transmission time by contending for the medium, or

other clients that are serviced by the same AP. By com-

paring the resulting packet times, the client can decide

which AP is preferable to use, and can signal the sender

to steer traffic away from the other APs via ECN.

In contrast to previous work, we only care about the

hypothetical wireless bandwidth from each AP to the

client, as some of the interference from other APs is cre-

ated by the client itself, so actual wireless bandwidth is

not a good estimator.

We model the packet delivery time T (if the client were

alone), when using the bitrate MCS at the AP and a PHY

loss rate p with R retransmissions per packet, ignoring

packets undelivered after R retries:

T =
R

∑
i=0

[(
MSS

MCS
+K) ·(i+1)+C ·

i

∑
j=0

·2 j] · pi ·(1− p) (1)

In the model above, the first term measures the packet

transmission time including the airtime used and K ac-

counts for different WiFi constants such as SIFS, DIFS

and the time needed to send the ACK at the lowest MCS

(1Mbps). The term C · ... measures the time spent due to

the contention interval, and models its increase on suc-

cessive frame losses. Finally, the whole term is moder-

ated by the probability that i retransmissions are needed

to successfully send the packet.

The client knows the MCS used by the AP, however

estimating the PHY loss rate is more difficult because it

can only observe successful transmissions; for each suc-

cessful transmission there may be an unknown number

of retransmissions, which conceal the physical loss rate.

Thus the obvious formula delivery prob = Nreceived

Ntotal
can-

not be used at the client, as Ntotal is unknown.

We avoid this problem by leveraging the “retry” bit

present in the MAC header of every frame, signaling

whether the frame is a retransmission. The client counts

N0, the number of frames received with the retry bit set

to 0. All the other frames reaching the client will have

Figure 4: Scenario 1 (left): a client using AP1 and AP2 prefers

AP2 because of its more efficient use of airtime. Scenario 2

(right): moving all traffic to AP2 with its better radio conditions

is not the optimal strategy end-to-end

the retry bit set to 1, and are counted as N1. We recast

the previous formula to measure the delivery probability

only for frames that are delivered on the first attempt:

delivery prob =
N0

N0 +N1 +Nlost

(2)

The term Nlost captures packets that were not delivered

by the AP despite successive attempts as shown by the

sequence number present in the MAC header.

Implementation. To accurately estimate the delivery

probability for all APs on a channel, the client main-

tains a FIFO queue of packets seen in a chosen interval,

recording for each packet the time of arrival, its sequence

number and its retry bit (10B in total). When new pack-

ets are received, or when timers expire, the packets out-

side the interval are purged, and N0, N1 and Nlost of the

corresponding AP are modified accordingly. Our imple-

mentation uses an interval of 500ms, which results in an

overhead per channel of around 10KB for 802.11a/g, and

100-200KB for 802.11n with four spatial streams.

5.2 Helping senders make the right choice

Consider the two scenarios depicted in Figure 4, where

AP2’s packet time is shorter than AP1’s, and the two sub-

flows going via AP1 and AP2 do not interfere at the last

hop. MPTCP congestion control [35] requires that it

does no worse than TCP on the best available path, and

it efficiently uses network resources. MPTCP achieves

the first goal by continuously estimating the through-

put TCP would get on its paths using a simple model

of TCP throughput, B =
√

2
p
· MSS

RTT
. With this estimate,

MPTCP adjusts its overall aggressiveness (total conges-

tion window increase per RTT over all its subflows) so

that it achieves at least the throughput of the best TCP.

To achieve the second goal, MPTCP gives more of the

increase to subflows with smaller loss rates.

In scenario 1, the throughput via AP2 is higher than

AP1, resulting in a lower loss rate on the corresponding

subflow and making the MPTCP sender send most of its

traffic via AP2. In scenario 2, other bottlenecks reduce

7

226  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

the throughput available via AP2, and the load balanc-

ing of traffic over paths will depend on the amount of

loss experienced on AP2. Either way, MPTCP will use

its estimate of throughput available over AP1 to ensure it

achieves at least as much in aggregate.

Our target is to help MPTCP achieve the same goals

when the two subflows via AP1 and AP2 interfere. For

this to happen, we use ECN to signal the sender that AP1

is worse and should be avoided when possible. Just mak-

ing traffic move away from AP1 is simple: the client will

simply mark a large fraction of packets (e.g. 10%) re-

ceived via AP1 with the Congestion Experienced code-

point, which will duly push the sender to balance most

of its traffic via AP2. However, this approach will back-

fire in scenario 2, where MPTCP will stick to AP2 and

receive worse throughput.

To achieve the proper behavior in all these scenarios,

the rate of ECN marks sent over AP1 must be chosen

carefully such that it does not affect MPTCP’s estimation

of TCP throughput via AP1. Our goal is to ensure that the

MPTCP connection gets at least as much throughput

as it would get via AP1 if the latter is completely idle.

In particular, say the rate of ECN marks the client adds

is δ . As the TCP congestion window depends on loss

rate, the congestion window will decrease when we in-

crease the loss rate. For the bandwidth to remain con-

stant, we would like RTTδ , the RTT after marking, to

also decrease. In other words we would like for the fol-

lowing equation to hold:

B =

√
2

p
·

MSS

RTT
=

√
2

p+ δ
·

MSS

RTTδ
(3)

We assume the subflow via AP1 is the unique sub-

flow at that AP; congestion control at the sender will

keep AP1’s buffer half-full on average. Thus, the aver-

age RTT observed by the client can be decomposed as

RTT = RTT0 +
BUF

2
· T1, where RT T0 is the path RTT,

and the second term accounts for buffering. Note that

we use T1, the average packet delivery time for AP1 es-

timated by our metric. If our client reduced its RTT to

RTT0 by decreasing its congestion window, it would still

be able to fill the pipe, and more importantly it would

allow the sender to correctly estimate the bandwidth via

AP1. Using these observations and simplifying the terms,

we rewrite the equation above as:

B =

√
1

p
·

1

RT T
=

√
1

p+ δ
·

1

RT T −T1 ·
BUF

2

(4)

Finally, knowing T1 gives us an estimate of the max-

imum bandwidth B = 1
T1

. We now have two equations

with three unknowns: p, δ and BUF . Fortunately, we

don’t need to know the exact value of BUF; using a

smaller value will only lead to a smaller value for δ ,

reducing our ability to steer traffic away from AP1. To

get an estimate of BUF , we note that nearly all wireless

APs are buffered to offer 802.11a/g capacity (25Mbps)

to single clients downloading from servers spread across

the globe (i.e. an RTT of at least 100ms). This implies

the smallest buffers should be around 2.5Mbit, which is

about 200 packets of 1500 bytes. We use 200 as our es-

timate for BUF, and can now solve the two equations for

δ . The closed form we arrive at is:

δ =
1

2
· (

50 ·T2
1

RTT · (RTT −50 ·T1)
)2 (5)

δ depends on the interface (T1) and the RTT of the sub-

flow that will be marked, both of which are available at

the client. Note that δ provides a maximum safe marking

rate, and the actual marking rate used may be lower. For

instance, marking rates in excess of 5% brings the TCP

congestion window down to around 6 packets and makes

TCP prone to timeouts.

In our implementation, the client computes the estima-

tion of δ for every AP it is connected to. The client moni-

tors the values of Ti for all of its interfaces, and sets ECN

marks for subflows routed via interfaces with a packet

time at least 20% larger than the best packet time across

all interfaces. The 20% threshold is chosen to avoid pe-

nalizing good APs for short fluctuations in performance

ECN marking happens before the packets get delivered

to IP processing code at the client.

6 Evaluation

We have implemented our solution in the Linux 3.5.0

kernel, patched with MPTCP v0.89. Most of the changes

are in the 802.11 part of the Linux kernel, and are inde-

pendent of the actual NIC used. The patch has 1.3KLOC,

and it includes code to compute the packet time for

each wireless interface, the ECN marking algorithm, and

channel switching support.

In this section we analyze each of our contributions

in detail both experimentally and, where appropriate, in

simulation. We first measure our client-side link esti-

mation technique in a controlled environment. Next, we

analyze the marking algorithm using 802.11n in the lab,

and extensively in simulation to find it provides close to

optimal throughput (90%) over a wide range of param-

eters. Next, we analyze fairness to existing clients and

performance for short downloads. Finally, we run pre-

liminary mobility tests “in-the-wild” using APs we do

not control, finding that our solution does provide near-

optimal throughput in real deployments.

8

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  227

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

D
el

iv
er

y
R

at
io

 (%
)

Time (s)

Ground truth
Client Estimate

Figure 5: Client-side estimation of PHY delivery probability

in 802.11a, fixed rate (54Mbps)

6.1 Client-side link quality estimation

To test the accuracy of our client-side estimation of PHY

delivery probability, we setup one of our APs in 802.11a,

place a sniffer within 1m of the AP, and place the client

around 10m away from the AP. The AP’s rate control

algorithm is disabled, and we set the MCS to 54Mbps.

Both the client and the sniffer measure the average

delivery ratio over a half-second window. The size of

the window is a parameter of our algorithm: larger val-

ues take longer to adapt to changing channel condi-

tions, while smaller values may result in very noisy es-

timations. Half a second provides a good tradeoff be-

tween noise and speed of adaptation. MPTCP congestion

control (we use the OLIA algorithm [36]) reacts fairly

quickly to moderate differences in loss rates (20% higher

loss rate on one path). Experiments show that it takes be-

tween 1s and 2s for traffic to shift to the better path once

an abrupt change has occurred, when the RTT is 50ms.

The client downloads a large file and we plot its esti-

mation of the delivery probability (relation (2)) against

the ground truth, as observed at the packet sniffer near

the sender. Two minutes into the experiment we increase

the transmit power of the AP to the max, thus improving

the delivery probability. The results are given in Fig-

ure 5 and show that the client’s estimation closely tracks

the actual delivery ratio, and the mean error across the

whole test is around 3%. We ran many experiments with

802.11g/n and observed similar behavior: client side es-

timation closely tracks the ground truth, and the mean

error rate was under 5% in all our experiments.

Our metric is based on the assumption that the deliv-

ery ratio is independent of the state of the packet (the

number of retries). This assumption is reasonable when

packet losses occur due to channel conditions, but breaks

down in hidden terminal situations, where a collision on

the first packet will most likely trigger collisions on sub-

sequent packets. In such cases, our metric’s focus only

on the initial transmissions will lead to errors, as follows:

• When competing traffic is sparse, our metric

will overestimate the PHY delivery probability by

around 10% in our tests.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

Th
ro

ug
hp

ut
 (M

bp
s)

Position

AP1
AP2

MPTCP
MPTCP+ECN

Figure 7: Throughput of a nomadic client at different position

between AP1 and AP2 in 802.11n. MPTCP with ECN marking

provides 85% of the optimal throughput.

• In heavy contention, one AP may be starved com-

pletely, and our client’s estimate will be unreliable.

This drawback does not affect our overall solution: we

need client-side estimation only when the two APs are

in carrier sense. When in hidden terminal, our experi-

ments show that the interaction between the MAC and

Multipath TCP leads to a proper throughput allocation,

and no further intervention via ECN is needed.

When a rate control algorithm picks a different rate

to resend the same packet, that packet will not have its

“retry” bit set despite being retransmitted. To understand

whether this affects our results, we ran experiments as

above but with rate control enabled; however the were no

discernible differences in the efficacy of our algorithm.

6.2 ECN Marking

We reran all the 802.11a/g experiments presented so far

with our client-side load balancing algorithm on. We

found that the marking did not influence the actual re-

sults: in particular, we verified that marking was not trig-

gered in the channel diversity setup we discussed before.

For a static 802.11n client, we applied the ECN mark-

ing as indicated by relation (5). The results shown in

Fig. 7 reveal that our metric and ECN algorithms work

well together, pushing traffic away from the inefficient

AP. Using the same setup, we then moved the client at

walking speed between the APs, as the whole distance

was covered in around 10s. The results (not shown) are

much noisier, but show that the ECN mechanism still

works fairly well overall; a similar result with a mix of

11n and 11g is later discussed in Figure 8. All further ex-

periments presented in this paper are run with the ECN

algorithm enabled, unless otherwise specified.

6.2.1 Simulation analysis

To understand how our proposed marking algorithm

works in a wide range of scenarios, we also implemented

it htsim, a scalable simulator that supports MPTCP and

that has been used in previous works [37, 38]. htsim

9

228  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120Th
ro

ug
hp

ut
 (P

er
ce

nt
 o

f O
pt

im
al

)

Flow Rank

MPTCP + ECN
MPTCP

MPTCP + ECN in scenario 2

(a) Flow throughput across a wide range

of parameters. Marking achieves on aver-

age 85% of the optimal throughput.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

TCP connections at the bottleneck link

MPTCP + ECN Marking
MPTCP

TCP via AP 1
TCP via AP 2

(b) ECN Marking delivers near optimal

throughput for scenario 2.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (%

 o
f o

pt
im

al
)

Number of APs used

MPTCP+ECN, Uniform
MPTCP+ECN, Worst case

MPTCP, Uniform

(c) Connecting to more APs reduces the to-

tal available throughput.

Figure 6: ECN simulation in htsim.

does not model 802.11; instead, we implemented a new

type of queue that models the high level behavior of

shared access in 802.11 DCF, namely: different senders’

(AP) packets take different time for transmission on the

medium, and when multiple senders have packets ready,

packets are chosen according to a weighted fair-queueing

algorithm, with predefined weights for the different APs.

Using this simple model, we can explore specified out-

comes in the MAC contention algorithm, for example

when AP1 wins contention four times more often than

AP2, that are difficult to obtain in 802.11 setups simply

by choosing different rate selection algorithm. Our sim-

ulated topology is shown in Fig. 4a, where the client is

using both AP1 and AP2. In all our tests, AP2 offers a per-

fect 802.11a/g connection (max 22Mbps), meaning that

T2, the packet time for AP2 is set to 0.5ms.

We ran simulations testing all the combinations of pa-

rameters important in practice:: RTT (10, 25, 50 and

100ms), T2 (from 1ms to 6ms), and the weights for dif-

ferent APs (1, 2, 4, 8 or 16). We ran a total of 120 simula-

tions, and we present the throughput obtained as percent-

age of the optimal, sorting all values ascendingly. Figure

6a shows that the ECN marking algorithm is very robust:

its average performance is 85% of the optimal (median

is 87%), and its worst case is 65%. In contrast, MPTCP

alone fares poorly: 34% throughput on average (28% in

the median). Finally, the throughput of MPTCP in Sce-

nario 2 is also robustly close to the optimal: average at

84% and median at 88%.

There are parameter combinations where the ECN al-

gorithm is not as effective: when RTTs are small, δ is

fairly high so ECN does manage to reduce the conges-

tion window over AP1. However, even a very small win-

dow of packets sent via AP1 is enough to eat up a lot of

airtime that would be better used by AP2, and this effect

is more pronounced when AP1 wins the contention more

often, because it has fewer retries.

In all experiments, we cap the marking rate to a maxi-

mum of 5% to avoid hurting throughput in Scenario 2.

This is a direct tradeoff: the higher the allowed rate,

the better MPTCP behaves in scenario 1, but the worse

it behaves in scenario 2. The reason for this behavior

is that the traditional formula used by MPTCP to esti-

mate throughput over its subflows is overly optimistic

for higher loss rates, where retransmit timeouts begin to

dominate throughput.

To analyze scenario 2, we use a setup where T1 = 3ms

(approx. 4Mbps), RT T = 25ms and vary the number of

TCP flows contending for the uplink of AP2, whose speed

is set to 25Mbps. Figure 6b shows that MPTCP alone

fails to deliver when the AP2 uplink is idle, but obtains

the maximum possible throughput when AP2’s uplink is

busy (same as TCP over AP2). MPTCP with ECN mark-

ing gets the best of both worlds: it closely tracks the per-

formance of a single TCP flow via AP2 when there is little

contention for AP2’s uplink, and it stabilizes to just under

4Mbps when AP2 uplink is congested.

Increasing the number of APs. We’ve looked at con-

necting to two APs until now. What happens when there

are more APs the client can connect to? We ran an ex-

periment where the best AP offers maximum rate, and we

are adding a varying number of other APs. In our first ex-

periment, we consider a worst case where all the added

APs are poor: their packet times is set to 6ms (2Mbps); in

our second experiment we distribute the packet times of

the APs uniformly between 0.5ms and 6ms, mimicking

a more realistic situation, and plot both results in Figure

6c. The results show a linear drop in the throughput ob-

tained as the number of APs increases when ECN is used,

however the slope is steeper when all APs have poor per-

formance. This graph shows that connecting to more

than 3-4 APs, is a bad idea: the client should choose the

few best APs and connect to those alone.

6.3 A mobility experiment

We now discuss a mobility experiment run in a build-

ing with mixed WiFi coverage: the user starts from a lab

on the second floor of the building, goes down a flight

of stairs and then walks over to the cafeteria. En route,

the mobile is locked on channel 6 and can associate to

five different APs, each covering different parts of the

route. We repeat the experiment several times, each tak-

ing of around one minute, during which the client is ei-

10

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  229

 0
 5

 10
 15
 20
 25
 30

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

Position

AP1
AP2

AP3
Handover

MPTCP+ECN

Figure 8: Mobility experiment: indoor client

walking speed.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

C
D

F
(%

)

Download time (s)

TCP UberAP1
TCP AP ED117

MPTCP+ECN

Figure 9: Static clients experience per-

formance variations outside their control;

MPTCP offers predictable performance











 






Figure 10: Experimental setup to test

fairness

ther: a) using one AP at a time, with standard TCP; b)

using MPTCP and associating to all APs it sees all the

time; or c) performing handover between the different

APs by using MPTCP. Our client monitors the beacons

received over a 2s period, and switches to a new AP when

it receives ∆ more beacons than the current AP. It is well

known that TCP performance suffers in cases of frequent

mobility [39]. The same effect happens during MPTCP

handovers, when a new subflow is created and has to do

slowstart after switching to a new AP. In-between APs

the client may flip-flop between APs based on its ob-

served beacon count, reducing overall performance. To

avoid this effect, we experimentally chose ∆ = 10.

In another experiment, the client slowly moves

through the building at 1km/h, and the results are shown

in Fig.8. At the beginning of the walk, the client has

access to two Linux APs running minstrel, and these

are also accessible briefly on the stairs, in the middle

of the trace. The departments’ deployment of uncoor-

dinated APs (Fortinet FAP 220B) are available both in

the lab at very low strength, on the stairs, and closer to

the cafeteria. Our mobile client connects to at most three

APs simultaneously. Throughout the walk, the through-

put of our MPTCP mobile client closely tracks that of

TCP running on the best AP in any given point; the han-

dover solution suffers because it uses a break−be f ore−

make strategy and throughput drops to nearly zero for 5-

10s. We also noticed that in the beginning of the trace

our ECN-based load balancing algorithm penalizes the

subflow over the department AP—if we disable it, the

throughput of MPTCP in that area drops dramatically.

6.4 Static clients

Our experiments so far show that connecting to multiple

APs pays off when mobile. Is it worth doing the same

when the client is static? We had our client connect to

two APs (channel 11) visible in our lab and that we do

not control, and the performance from both APs is simi-

lar. Our client repeatedly downloads the same 10MB file

from one of our servers using either TCP over AP1, TCP

over AP2 or MPTCP+ECN over both APs. We ran this

experiment during 5 office hours, and present a CDF of

the throughputs obtained in Figure 9. The figure shows

there is a long tail in the throughput obtain via either

AP because of external factors we do not control: other

WiFi users, varying channel conditions, etc. The me-

dian download time for AP1 is 5s, 5.6s via AP2 and 6s

with MPTCP (20% worse). However, MPTCP reduces

the tail, cutting the 99% download time in half.

Power consumption While connected to different APs,

the solution adds the following per AP costs: associa-

tion and authentication handshakes, DHCP, and the null

frames required whenever the mobile goes in and out of

power save. These are negligible, as the bulk of the cost

is due to the radio processing and the TCP/IP stack [40].

The energy cost of our solution is therefore dependent on

the actual throughput achieved, which is near-optimal.

6.5 Fairness

We have focused our analysis so far on the performance

experienced by a client connecting to multiple APs, and

showed that there are significant benefits to be had from

this approach. We haven’t analyzed the impact this so-

lution has on other clients: is it fair to them? Does our

solution decrease the aggregate throughput of the sys-

tem? In answering these questions, our goals are neither

absolute fairness (WiFi is a completely distributed pro-

tocol and also inherently unfair), nor maximizing aggre-

gate throughput (which may mean some distant clients

are starved). Rather, we want our solution’s impact on

other clients to be no worse than that of a TCP connec-

tion using the best available AP.

The theory of MPTCP congestion control reassures

us that two or more subflows sharing the same wireless

medium will not get more throughput than a single TCP

connection would. Also, if an AP has more customers,

Multipath TCP will tend to steer traffic away from that

AP because it sees a higher packet loss rate.

We used the setup shown in Figure 10 to test the be-

havior of our proposal. There are two APs each with a

TCP client in their close vicinity, using 802.11a, and an

MPTCP client C using both APs.

The first test we run has both APs using maximum

power: when alone, all clients will achieve the maxi-

11

230  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

C conn. to AP1-C1 AP2-C2 C

AP1 (TCP) 5 10 5

AP2 (TCP) 10 5 5

AP1&AP2 7 7 7

Table 1: APs&clients in close range:

MPTCP provides perfect fairness

(802.11a, throughput in Mbps).

C conn. to AP1-C1 AP2-C2 C

AP1(TCP) 3.5 13 3.5

AP2(TCP) 10 5 5

AP1&AP2 10 5 5

Table 2: Client close to AP2: MPTCP

client behaves as TCP connected to AP2

C conn. to AP1-C1 AP2-C2 C

AP1(TCP) 3.5 13.5 3

AP2(TCP) 14 3 3

AP1&AP2 8.5 6.5 5

Table 3: Client in-between APs: MPTCP

client improves overall fairness

mum rate in 802.11a, around 22Mbps. The results of the

experiment are shown in table 1: when the client con-

nects to both APs, the system achieves perfect fairness.

In comparison, connecting to either AP alone will lead

to an unfair bandwidth allocation. In this setup, MPTCP

congestion control matters. If we use regular TCP con-

gestion control on each subflow, the resulting setup is

unfair: the MPTCP client receives 10Mbps while the two

TCP clients each get 5Mbps.

We next study another instance of the setup in Fig. 10

where the APs, still in CS, are farther away, and while

the TCP clients remain close to their respective APs, they

get a lesser channel to the opposite AP. First, we place C

close to AP2. When C connects to AP1, which is farther,

it harms the throughput of C1, and the overall fairness is

greatly reduced. When C connects to both APs, its traffic

flows via the better path through AP2, offering optimal

throughput without harming fairness (Table 2). When

the client is between the two APs, traffic is split on both

paths and the overall fairness is improved, while also in-

creasing the throughput obtained by our client (Table 3).

In summary, by connecting to both APs at the same

time and splitting the downlink traffic between them,

MPTCP achieves better fairness in most cases, and never

hurts traffic more than a TCP connection would when

using the best AP.

7 Channel-switching

To connect to APs on different WiFi channels, clients can

use channel switching, a technique supported by all NICs

for probing. This technique, was proposed and shown to

work in previous work [18, 19, 20, 21]; We implement a

similar procedure, but with adaptation based on the ac-

tual bandwidth obtained on each channel.

Say the client spends a slot ci on channel i, such that

the sum of all slots equals the global duty cycle C =∑i ci.

While on channel i, the client measured the bandwidth it

receives on that channel, bi, by counting the number of

bytes received in a slot and dividing it by ci. We consider

the following family of algorithms for channel switching:

ci =
bα

i

∑ j bα
j

·C (6)

The equation prescribes how to compute ci for the next

interval based on the throughput observed in the current

interval, where the interval is a multiple of C. α dictates

how aggressively we prefer the good channels over the

bad ones: higher values lead to more time spent on the

best channels. Choosing α strikes a tradeoff between

throughput obtained and accurate probing that enables

quick adaptation in channel conditions.

The discussion so far has assumed MPTCP is able to

allow all APs on different channels to send at flat rate

during their slot; in other words Multipath TCP manages

to keep all the paths busy. Also note that there are no di-

rect interactions between the MACs of the different APs

during this time: enabling MPTCP to work over chan-

nel switching is a much easier task. All we need is to

make sure the MPTCP subflows do not suffer frequent

timeouts, which can occur due to:

• Wildly varying round-trip times leading to inaccu-

rate values of the smoothed RTT estimator.

• Bursts of losses suffered when congestion windows

are small and fast retransmit is not triggered.

The first problem is quite likely to appear during chan-

nel switching, as the senders will see bimodal RTT val-

ues: path RTT for packets sent during the channel’s slot,

and C for packets sent while outside the slot. To avoid

this problem, we impose that C is smaller than the small-

est possible RTO at clients, which must be higher than

the delayed ACK threshold (200ms). Hence, our first re-

striction is that C ≤ 200ms.

To avoid the second problem, we lower bound the time

spent on any channel to a minimum value that allows the

AP to send at least one packet per slot; this implies that

the smallest slot has to be at least 10ms.

We have implemented channel switching support in

the Linux kernel, together with the family of algorithms

discussed above. With this implementation, we ran a se-

ries of experiments to understand the basic performance

of channel switching in our context. We have the client

associate to two APs in (channels 40 and 44, 802.11a)

and modify the transmit power of the APs while we ob-

serve the adaptation algorithms at work. The results are

shown in the table below. The experiments with both

APs set at max power show that the channel switch-

ing overheads (of around 5ms in our measurements) re-

duce the total available throughput by around 10% when

switching between two channels with a duty cycle of

200ms. If we decrease the power of AP2, α = 2 does

12

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  231

a good job of increasing the slot of AP1, and obtaining

87% of the optimal throughput. In contrast, the algorithm

α = 0 assigns equal slot to both APs and throughput is

the average of both APs’ throughput:

Power for TCP TCP MPTCP + switch

AP1&AP2 AP1 AP2 α = 2 α = 0

Max & Max 20 20 18 18

Max & Low 20 14 17.5 16

Max & Low 20 5 17.5 12

The experiments show that MPTCP and channel

switching play nicely together. We note that the ex-

periments work similarly regardless the WiFi standard

used. Our driver independent channel switching proce-

dure, through its adaptive slot, makes it possible for an

MPTCP based mobile to access capacity on independent

channels in a fluid manner.

7.1 Channel switching with many users

The one key difference between the single channel and

multi channel scenarios is the behavior when multiple

users are connected to the same APs. When on the same

channel, users tend to stick to the AP closest to them as

our experiments showed in Section 4. When switch-

ing, the clients are not coordinated and will affect each

other’s throughput, depending on how their slots over-

lap. Intuitively, when multiple clients make independent

switching decisions we expect the overall channel uti-

lization to be suboptimal. We resort to simulation to un-

derstand these effects. We model a number of mobile

clients connected to three APs on three distinct channels,

and all clients can download from every AP at 22Mbps

(i.e. the 802.11g perfect channels). The optimum is for

the clients’ speeds to sum up to 66Mbps. With chan-

nel switching, however, clients’ slots will overlap and

some channels will be idle while others may have two

clients using them simultaneously. Our simulator uses a

simplified model that assumes no channel switch over-

heads, and that bandwidth is shared equally amongst all

clients using a channel. When computing slot times, we

also add a number of ms chosen uniformly at random be-

tween 1-10ms, to model for random delays experienced

by channel switching code due to interactions with the

AP [18]. In the table below we plot the average through-

put obtained as a percentage of the optimum.

Users 1 2 3 4 5 7 10

α = 2 100 80 64 70 76 81 87

The results show worst results when three users con-

tend for three channels and a third of the capacity is lost;

if fewer or a lot more users share the channels, the effects

are less pronounced. Note that these results also hold for

the single channel setting, when the AP backhaul is the

bottleneck (i.e. DSL scenarios).

8 Conclusion & Future work

We are witnessing a paradigm shift for wireless mobility:

instead of using a single AP at any one time and racing to

quickly change to the next when signal fades, the emerg-

ing MPTCP standard allows clients to use multiple APs

in range and achieve a truly mobile experience, indepen-

dent of L2 handover. Our main contribution in this paper

is understanding the interaction between the WiFi MAC

and MPTCP, and optimizing it for mobility.

Our experiments have shown that, in many cases, the

load balancing job is done by the WiFi MAC (our carrier-

sense experiments with 802.11a/g) or by interactions of

the MAC and MPTCP congestion control (hidden termi-

nal). However, there are situations when connecting to

multiple APs can hurt throughput. We have offered a so-

lution to these cases that utilizes a novel client-side mea-

surement method together with an algorithm that uses

ECN marking to enable the sender congestion controller

to balance of traffic to the most efficient AP.

We have implemented and tested our solution both

in simulation and in the Linux kernel. Nomadic and

mobile experiments show our solution gets near-optimal

throughput and is robust to changes in AP quality be they

from client mobility or other factors.

In future work we plan to incorporate heuristics that

allow WiFi clients to quickly associate to APs in vehic-

ular mobility scenarios, as proposed by [41, 21]; a wider

range of mobility experiments is also needed to ensure

we have covered all the relevant situations. Additionally,

we need to deploy our solution on mobile devices and

quantify the energy consumption of our proposal, partic-

ularly in the channel switching scenario.

Our end-goal is to build a usable mobility solution

which will combine channel switching as well as asso-

ciating to multiple APs on the same channel. Under-

standing how our single channel solutions interact with

switching is area worth of exploration.

Acknowledgements: This work was partly funded by

Trilogy 2, a research project funded by the European

Commission in its Seventh Framework program (FP7

317756), and by Mobil4, a research project funded by the

Romanian government (UEFISCDI 11/2012). We also

thank the anonymous reviewers and our shepherd Venkat

Padmanabhan for their insightful feedback.

References

[1] A. Miu, G. Tan, H. Balakrishnan, and J. Apos-

tolopoulos, “Divert: fine-grained path selection for

wireless lans,” in Proceedings of the 2nd interna-

tional conference on Mobile systems, applications,

and services, pp. 203–216, ACM, 2004.

13

232  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

[2] R. Murty, J. Padhye, R. Chandra, A. Wolman, and

B. Zill, “Designing high performance enterprise

Wi-Fi networks.,” in NSDI, vol. 8, pp. 73–88, 2008.

[3] B. T. F. Network, “http://www.btfon.com/.”

[4] A. Farshad, M. K. Marina, and F. Garcia, “Urban

wifi characterization via mobile crowdsensing,” in

Network Operations and Management Symposium

(NOMS), 2014 IEEE, pp. 1–9, IEEE, 2014.

[5] A. S. Engineering and Q. Associates, “Study on the

use of wi-fi for metropolitan area applications.” Fi-

nal Report for Ofcom, April 2013.

[6] V. Brik, A. Mishra, and S. Banerjee, “Eliminating

handoff latencies in 802.11 WLANs using multiple

radios: Applications, experience, and evaluation,”

in Proceedings of the 5th ACM SIGCOMM Confer-

ence on Internet Measurement, IMC ’05, (Berkeley,

CA, USA), pp. 27–27, USENIX Association, 2005.

[7] A. Mishra, M. Shin, and W. Arbaugh, “An empiri-

cal analysis of the IEEE 802.11 MAC layer hand-

off process,” SIGCOMM Comput. Commun. Rev.,

vol. 33, April 2003.

[8] I. Ramani and S. Savage, “SyncScan: practical

fast handoff for 802.11 infrastructure networks,”

in INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications So-

cieties. Proceedings IEEE, vol. 1, pp. 675–684,

IEEE, 2005.

[9] Y.-S. Chen, M.-C. Chuang, and C.-K. Chen,

“Deucescan: Deuce-based fast handoff scheme in

IEEE 802.11 wireless networks,” Vehicular Tech-

nology, IEEE Transactions on, vol. 57, pp. 1126–

1141, March 2008.

[10] M. Shin, A. Mishra, and W. A. Arbaugh, “Improv-

ing the latency of 802.11 hand-offs using neighbor

graphs,” in Proceedings of the 2Nd International

Conference on Mobile Systems, Applications, and

Services, MobiSys ’04, (New York, NY, USA),

pp. 70–83, ACM, 2004.

[11] “Virtual cells: The only scalable multi-channel de-

ployment.” MERU white paper, 2008.

[12] “IEEE standard for information technology– lo-

cal and metropolitan area networks– specific

requirements– part 11: Wireless LAN medium

access control (MAC) and physical layer (PHY)

specifications amendment 2: Fast basic service set

(BSS) transition,” IEEE Std 802.11r-2008 (Amend-

ment to IEEE Std 802.11-2007 as amended by IEEE

Std 802.11k-2008), pp. 1–126, July 2008.

[13] “IEEE standard for information technology– lo-

cal and metropolitan area networks– specific

requirements– part 11: Wireless LAN medium ac-

cess control (MAC) and physical layer (PHY) spec-

ifications amendment 1: Radio resource measure-

ment of wireless LANs,” IEEE Std 802.11k-2008

(Amendment to IEEE Std 802.11-2007), pp. 1–244,

June 2008.

[14] S. Pack, J. Choi, T. Kwon, and Y. Choi, “Fast-

handoff support in IEEE 802.11 wireless net-

works,” IEEE Communications Surveys and Tuto-

rials, vol. 9, no. 1-4, pp. 2–12, 2007.

[15] A. C. Snoeren and H. Balakrishnan, “An end-to-

end approach to host mobility,” in Proc. Mobicom,

ACM, 2000.

[16] W. M. Eddy, “At what layer does mobility belong?,”

Communications Magazine, IEEE, vol. 42, no. 10,

pp. 155–159, 2004.

[17] R. Chandra and P. Bahl, “Multinet: Connecting to

multiple IEEE 802.11 networks using a single wire-

less card,” in INFOCOM 2004. Twenty-third An-

nualJoint Conference of the IEEE Computer and

Communications Societies, vol. 2, pp. 882–893,

IEEE, 2004.

[18] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and

D. Katabi, “FatVAP: aggregating AP backhaul ca-

pacity to maximize throughput,” in Proceedings of

the 5th USENIX Symposium on Networked Systems

Design and Implementation, NSDI’08, (Berkeley,

CA, USA), pp. 89–104, USENIX Association,

2008.

[19] D. Giustiniano, E. Goma, A. Lopez, and P. Ro-

driguez, “WiSwitcher: an efficient client for

managing multiple APs,” in Proceedings of the

2nd ACM SIGCOMM workshop on Programmable

routers for extensible services of tomorrow, pp. 43–

48, ACM, 2009.

[20] A. J. Nicholson, S. Wolchok, and B. D. Noble,

“Juggler: Virtual networks for fun and profit,”

IEEE Transactions on Mobile Computing, vol. 9,

pp. 31–43, Jan. 2010.

[21] H. Soroush, P. Gilbert, N. Banerjee, B. N. Levine,

M. Corner, and L. Cox, “Concurrent wi-fi for mo-

bile users: Analysis and measurements,” in Pro-

ceedings of the Seventh COnference on Emerg-

ing Networking EXperiments and Technologies,

CoNEXT ’11, (New York, NY, USA), pp. 4:1–4:12,

ACM, 2011.

14

USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  233

[22] A. J. Nicholson, Y. Chawathe, M. Y. Chen, B. D.

Noble, and D. Wetherall, “Improved access point

selection,” in Proceedings of the 4th International

Conference on Mobile Systems, Applications and

Services, MobiSys ’06, (New York, NY, USA),

pp. 233–245, ACM, 2006.

[23] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose,

and D. Towsley, “Facilitating access point selection

in IEEE 802.11 wireless networks,” in Proceedings

of the 5th ACM SIGCOMM conference on Internet

Measurements, pp. 26–26, USENIX Association,

2005.

[24] S. Shakkottai, E. Altman, and A. Kumar, “Multi-

homing of users to access points in WLANs: A

population game perspective,” Selected Areas in

Communications, IEEE Journal on, vol. 25, no. 6,

pp. 1207–1215, 2007.

[25] B. alexander Cassell, T. Alperovich, M. P. Well-

man, and B. Noble, “Access point selection under

emerging wireless technologies,” 2011.

[26] O. B. Karimi, J. Liu, and J. Rexford, “Optimal col-

laborative access point association in wireless net-

works,” in Proc. IEEE INFOCOM 2014, 2014.

[27] A. Miu, H. Balakrishnan, and C. E. Koksal, “Im-

proving loss resilience with multi-radio diversity in

wireless networks,” in Proceedings of the 11th an-

nual international conference on Mobile computing

and networking, pp. 16–30, ACM, 2005.

[28] A. Ford, C. Raiciu, M. Handley, and O. Bonaven-

ture, “TCP Extensions for Multipath Operation

with Multiple Addresses,” rfc6824, IETF, 2013.

[29] A. Balasubramanian, R. Mahajan, A. Venkatara-

mani, B. N. Levine, and J. Zahorjan, “Interactive

wifi connectivity for moving vehicles,” ACM SIG-

COMM Computer Communication Review, vol. 38,

no. 4, pp. 427–438, 2008.

[30] A. Kochut, A. Vasan, A. U. Shankar, and

A. Agrawala, “Sniffing out the correct physical

layer capture model in 802.11 b,” in Network Pro-

tocols, 2004. ICNP 2004. Proceedings of the 12th

IEEE International Conference on, pp. 252–261,

IEEE, 2004.

[31] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and

R. Morris, “Link-level measurements from an

802.11 b mesh network,” in ACM SIGCOMM Com-

puter Communication Review, vol. 34, pp. 121–

132, ACM, 2004.

[32] S. Choi, K. Park, and C.-k. Kim, “On the perfor-

mance characteristics of WLANs: Revisited,” SIG-

METRICS Perform. Eval. Rev., vol. 33, pp. 97–108,

June 2005.

[33] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and

A. Duda, “Performance anomaly of 802.11b,”

in INFOCOM 2003. Twenty-Second Annual Joint

Conference of the IEEE Computer and Communi-

cations. IEEE Societies, vol. 2, pp. 836–843, IEEE,

2003.

[34] D. Giustiniano, E. Goma, A. Lopez Toledo, I. Dan-

gerfield, J. Morillo, and P. Rodriguez, “Fair wlan

backhaul aggregation,” in Proceedings of the Six-

teenth Annual International Conference on Mobile

Computing and Networking, MobiCom ’10, (New

York, NY, USA), pp. 269–280, ACM, 2010.

[35] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Han-

dley, “Design, implementation and evaluation of

congestion control for multipath tcp,” in Proceed-

ings of the 8th USENIX conference on Networked

systems design and implementation, NSDI’11,

(Berkeley, CA, USA), pp. 8–8, USENIX Associ-

ation, 2011.

[36] R. Khalili, N. Gast, M. Popovic, U. Upadhyay,

and J.-Y. Le Boudec, “Mptcp is not pareto-optimal:

Performance issues and a possible solution,” in

Proceedings of the 8th International Conference on

Emerging Networking Experiments and Technolo-

gies, CoNEXT ’12, (New York, NY, USA), pp. 1–

12, ACM, 2012.

[37] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Han-

dley, “Design, implementation and evaluation of

congestion control for multipath TCP,” in Proc.

Usenix NSDI 2011.

[38] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,

D. Wischik, and M. Handley, “Improving datacen-

ter performance and robustness with multipath tcp,”

in Proceedings of the ACM SIGCOMM 2011 Con-

ference, SIGCOMM ’11, (New York, NY, USA),

pp. 266–277, ACM, 2011.

[39] P. Manzoni, D. Ghosal, and G. Serazzi, “A simula-

tion study of the impact of mobility on tcp/ip,” in

Network Protocols, 1994. Proceedings., 1994 In-

ternational Conference on, pp. 196–203, Oct 1994.

[40] A. Garcia-Saavedra, P. Serrano, A. Banchs, and

G. Bianchi, “Energy consumption anatomy of

802.11 devices and its implication on modeling and

design,” in Proceedings of the 8th International

Conference on Emerging Networking Experiments

15

234  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

and Technologies, CoNEXT ’12, (New York, NY,

USA), pp. 169–180, ACM, 2012.

[41] J. Eriksson, H. Balakrishnan, and S. Madden,

“Cabernet: vehicular content delivery using wifi,”

in Proceedings of the 14th ACM international

conference on Mobile computing and networking,

pp. 199–210, ACM, 2008.

16

