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Abstract—AirDocs is a middleware system that allows placing
and retrieving objects or documents at different indoor locations
without requiring a positioning system. We show how existing
WiFi/BLE infrastructure can be used to create unique place
signatures that can serve for indexing a collection of documents.
The middleware enables many location centric applications, and
relies only on an app installed on the smartphone, and a server
placed in the intranet or cloud.

Index Terms—WiFi, fingerprint, indoor location, context, mid-
dleware, AirDocs.

I. INTRODUCTION

As environments become very cluttered in schools, homes,
and institutions, one of the challenges will be in how we man-
age these collections of Internet connected objects. Operating
and maintaining physical object databases comes with signif-
icant challenges in management of devices, topologies, inter-
operation, security, privacy, portability, and context awareness.
This concept of context is heavily overloaded, but is in fact
quite central for pervasive computing and IoT, so that ongoing
research still requires extensive surveying effort and building
of taxonomies [1]–[4].

Position is certainly a context, but obtaining it, especially
indoors requires nontrivial effort. Indoor location will no doubt
play an important role in the quest for context awareness, but
research in locating and tracking devices, which has ramped
up significantly in the last decade [5], [6], has shown that
obtaining indoor location is costly in several ways: neces-
sary infrastructure, specialized hardware(UWB [7], LiDAR
[8]), instrumentation of the environment, low accuracy (WiFi,
BLE), effort (training and maintaining location databases),
battery consumption (GPS, WiFi, 4G methods), maintenance
of privacy (Google tracking). Even if GPS were fully avail-
able indoors, its continuous daily use would place significant
battery usage. In contrast, this project proposes a method to
associate data to indoor locations without the need to
obtain and maintain positions in a Cartesian space. Instead,
the system relies on wireless measurements (WiFi, 3G-5G,
Bluetooth) are monitored permanently by all mobile devices
as part of their normal functioning, requiring no additional
gathering effort. Collecting this information in a signature of
the context, which includes the WiFi fingerprint and other
context specific information, enables retrieval of information
based on signatures.
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AirDocs is a middleware system that uses this context
specific signature to allow placing and retrieving objects or
documents at different indoor locations without requiring
actual position. It relies on WiFi/Bluetooth infrastructure ex-
isting in most homes and institutions, requires only a single
additional intranet/cloud server, and a mobile app that can
be installed on any Android mobile device. AirDocs enables
many applications that involve natural placing and retrieving
of documents at locations.

The system is akin to augmented reality with the users
having the illusion of the documents being spread in the phys-
ical environment, visible only at certain locations. Leaving a
document “in the air” allows for a natural way to use it as
a wireless post-it for museums explanations, maps directions
in airports and malls, advertising, lab door announcements,
restaurant menus, office pin-boards, refrigerator post-its, gen-
eral reminders, and notices around the house and office. Many
of these applications would usually require location, but if the
AirDocs service is available, the functionality of placing and
retrieving documents can be used right away requiring only
the installation of the Android application.

Contact tracing [9], [10] has recently seen a surge of
interest, and has similar requirements with our system: no
additional infrastructure, and simple operation with existing
smartphones. AirDocs explores the same idea of proximity
based on dissimilarity, and can be used as support for a contact
tracing app, since the 1m-4m proximity detection is within
range of current health advisories.

II. SYSTEM ARCHITECTURE

The AirDocs architecture is represented in Figure 1. The
middleware provides an API for scanning Wi-Fi APs, cel-
lular networks, Bluetooth Low Energy (BLE) devices, GPS
information, and sound, in order to build signatures. Also, it
includes methods for sending documents to the server along
with the associated signature, and for retrieving documents
from the server for a recently collected signature. This mid-
dleware can then be used by actual applications in order to
store and retrieve documents depending on their specific.

The server is responsible with storing documents and their
associated signatures, and also with identifying the appropriate
document for a certain signature. It does this by comparing
the collected signature with other signatures stored in the
database, by using a (dis)similarity function. The most similar
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Fig. 1: Put/Get documents on the server based on radio
signatures that are location specific, but without necessarily
using Cartesian locations.

signature is identified and the associated document is retrieved
and displayed in the application.

The unique rich signatures can then be used to manage a
document collection without mapping them to geographical
locations, but in fact obtaining an association between a
document and its location in the building, not necessarily a
Cartesian position. The data-structure obtained provides many
functionalities of a location indexed database. The middleware
(Figure 1) offers three main primitives to the applications:

• S = CreateSgn() collects a location specific signature
from the phone sensors(WiFi, BLE, 4G, sound, etc) and
creates a multidimensional signature that is unique from
any other location signature in the building;

• Put(S, document) stores a document on the server as-
sociated with the signature S; The signature is created
by a phone, but the indexing of the signatures and the
document storage happen on a cloud/intranet server.

• Get(S) - a phone harvests its current signature, and
asks the server for a list of documents that have similar
signatures, that have been stored at nearby locations.
The server searches in the signature space, and real
geographical coordinates are never needed.

On the server, documents are indexed by their signatures,
based on the similarities between them. For a given signature
query, the server may 1. Retrieve the document with the lowest
dissimilarity with the query, or 2. Retrieve all documents with
dissimilarities below a threshold. Since real physical positions
are not known, the database of signatures on the server needs
to be organized using clustering and labeling methods.

The institution owning the WiFi infrastructure may deploy
AirDocs services on a known port so that smartphone apps
can easily discover instances of the servers with documents.
In fact, as long as the WiFi/BLE infrastructure is stable, the
system could be used with a server placed in the cloud, and the
app could access a community or application specific server
that stores signatures obtained from a given physical space,
but without being administratively tied to that space.

A. Dissimilarity measure

Generally, positioning using fingerprints uses some function
of distance in signal space, with Euclidean used in the RADAR
paper [11], and many others tested in the literature. [12]
tests Minkowski, cosine, Pearson correlation, and Shepard,
finding that Euclidean and Pearson correlation provide the best
results. In other studies, Mahalanobis is found to have the
best performance, but for our setup it cannot be applied, since
Android only gives one RSSI scan every 3 seconds, therefore
a covariation matrix between RSSI distributions of different
APs cannot be obtained without a long wait. Torres-Sospedra
et al. [13] explore many others distances ad dissimilarities used
in the literature, and found Sørensen (BrayCurtis coefficient)
to perform best. Of these, we decided to test Minkowski
(p = 2, Euclidean), cosine, Pearson correlation and Bray-
Curtis. We chose to use Bray-Curtis on the basis of providing
better monotonicity in cross validation against our dataset. In
addition, we adopted some other improvements proposed in
[13]: zero-to-one normalized representation (equation 1) of a
RSSI value xi in dBm:

Xi = normalized(xi) = α(1− xi

min
)e (1)

We chose the scale value α so that the range of xi observed
values -95 dBm .. -30 dBm get mapped to Xi in the interval
[0,1]. The purpose of this normalization is double: it maps
negative power reading in dBm to positive values that are
needed by some similarity measures, but also discounts more
differences between low power readings. The latter means that
differences in stronger signals are penalized, for example a
-90 dBm to -85 dBm difference is less important than a -
40 dBm to -35 dBm difference, as RSSI readings are known
to be much noisier at low power values. The Bray-Curtis
dissimilarity (Sørensen distance), deemed the most performant
in [13], relies APs common between the two fingerprints:

BCurtis(X,Y ) =

∑c
i=1 |Xi − Yi|∑c
i=1 (Xi + Yi)

(2)

For APs missing between the two signatures, we consider
them visible at -100dBm (-99dBm is the minimum observed
value in datasets in this article), so that they contribute to the
dissimilarity.

B. Measurements

We collected a dataset of 85 points in our own office build-
ing with collection points uniformly spread along a square
shaped corridor. For each measurement point, 4 directions
were collected, rotating 90o after each scan. Two Android
devices (Google Pixel 4A and Redmi Note 8) were held at
face level away from the body at one step (0.6m) resolution.
The building has an infrastructure WiFi, and a measurement
point receives a median of 32 APs (minimum 20APs, 95% =
49APs). For the following numbers we use data collected with
one phone for querying against the database collected with the
other device.
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Fig. 2: Classification using a circle: simple thresholding in
signal space produces false negatives and false positives.
TP=true positives, FP=false positives, FN=false negatives.

As shown in Figure 2, the relation between dissimilarity
and real distance is plotted with one blue dot for each pair of
points which are at a distance up to 7 m. As expected, points
with large dissimilarities are at larger distances to each other,
but the linear fit still leaves some residuals.

An user may harvest its radio signature for his current
location, and request either the the closest document in the
database, or all documents in an area around him. If requesting
the closest document, 70% of the queries return the exact same
location, and distances to closest points are bounded by 0.6m
and 1.67m (50% and 95% respectively).

If requesting documents in a circular range, the simplest
scheme is to threshold dissimilarity values to limit the area in
which documents are returned. Even if AirDocs doesn’t use
real locations, users would have the feeling of discovering doc-
uments in a sphere around them that is sized relative to human
dimensions. Using a threshold as indicated in Figure 2, the
given query may produce some false negatives (FN) and false
positives(FP). If we limit FN so to obtain a recall( TP

TP+FN ) of
0.99, the threshold used and the precision( TP

TP+FP ) obtained
are presented in Table I.

TABLE I: Threshold classification of dissimilarity with 99%
recall.

Radius dissimilarity precision 95% of results below
2.0m 0.32 0.57 3.8m
2.5m 0.35 0.63 4.2m
3.0m 0.37 0.66 4.4m
4.0m 0.45 0.75 5.4m
5.0m 0.54 0.78 6.2m

The third column indicates that false positives are returned
up to a potentially larger radius, which defines the resolution
of the system. While these preliminary results are promising,
there are a number of considerations:
AP density affects the performance of the system in more
than one way: on one hand more APs means more ways to
discriminate between close locations, on the other hand unsta-
ble AP picked up by Android scanning introduces additional
noise in the dissimilarity. More study is needed to understand
which APs contribute positively to the signatures.

Whitelists: in many setups there will be temporary APs, or
APs that change location. If these are a small fraction of the
total, their effect will not be visible, but for low densities of
stable APs the system should only use APs in a whitelist with
MAC addresses that belong to the infrastructure. Also, most
modern APs create virtual SSIDs, so the same physical card
would broadcast under MAC addresses differing by one byte
(Cisco), therefore a whitelist would be beneficial in unifying
these readings.
Increased resolution: One of the first method to obtain
increased resolution for the dissimilarity of the signatures is
to use of additional sensors besides WiFi. BLE infrastructures
are not as prevalent as WiFi, but all the issues explored in
this paper for WiFi apply directly when beacons are available.
For WiFi, a substantial increase in accuracy could come from
collecting WiFi beacons at a higher rate than 0.3Hz offered
by Android phones. Most laptops in monitor mode can collect
the 10 beacons per second emitted by regular SSIDs, a value
which would drastically improve both dissimilarity accuracy,
and collection time. Unfortunately, the use of laptops would
decrease the accessibility of the project.

Fig. 3: a location specific signature is built using other sensors
available the smartphone.

Figure 3 shows several possible sources of data that could
make signatures more rich, and thus more discriminate with
respect to location. 4G/5G has a rather low positioning accu-
racy, but is available in all smartphones, and could be used
to speed up the searching structures in the server. Sound
reflections (as used in project EchoTag [14]) are another source
of enriching the signature that does not require deploying of
additional infrastructure. In summary, any context information
that is stable, available, and easily collectable by the phone
can become part of the signature.

III. RELATED WORK

Using location as context for enhancing human computer
interaction has been proposed more than two decades ago
[15], [16], and in AirDocs we are revisiting some of those
visions in the context of newly available functionalities (Wi-
Fi, BLE, magnetic). Wireless propagation indoor has a hard
to predict behaviour because of the heterogeneity of the
environment, furniture and people, therefore many positioning
systems require extensive training and updating to maintain
a positioning service [17]. In contrast, AirDocs proposes
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management of documents in a context aware fashion, but
not linked to geographic locations which are natural contexts.
Association of documents with locations has been explored —
web documents are being geo-tagged and geo-referenced [18],
and in the database community there are efforts to formalize
searches for objects distributed in space [19].

POIs (points of interest) are associated to GPS maps to
assign data to physical locations. They are used in the realm
of outdoor activities to associate documents to locations. A
project called Digital Graffiti [20] from University of Linz,
Austria aims at associating data to outdoor locations, but it
requires access to GPS, and to the Internet to access the data.

The EchoTag project [14] uses the microphone and speaker
of the mobile phone to create a sound signature specific to the
location. We plan to explore this direction with the purpose of
creating an even richer signature for AirDocs.

Augmented reality is an emerging technology that “supple-
ments the real world with virtual (computer-generated) objects
that appear to coexist in the same space as the real world” [21].
[22] mentions projects spawned from MIT Media Lab’s project
sixth sense, that achieves a form of augmented reality by re-
quiring the user to carry a projector and a camera to recognize
hand gestures. AirDocs is an enabler of augmented reality
in the sense that documents are embedded in physical space,
but without requiring positioning, head mounted displays, or
instrumentation of the environment.

Dousse et. al [23] develop a purely fingerprint-based
placelearning method. Its core is a density-based clustering
algorithm that works directly on the raw WiFi fingerprints.
They also study the behavior of fingerprints with respect to
space and time, but their focus on learning about stationary
places by using 60s sampling, manually labeled sets, and an
unspecified spatial resolution of these places. Also, locations
are visited for more than 5 minutes, in contrast with AirDocs,
which aims for a more fluid user experience.

IV. CONCLUSION

We propose AirDocs, a system that makes use of signatures
composed of stable information about the location that is
easily collectable by smartphones, so that documents are
managed spatially, but without the use of a location system,
which usually requires extra infrastructure, training, or crowd-
sourcing of measurements. AirDocs works without any setup
of the mobile or of the environment, and relies on a single
server (intranet/cloud) to manage the placing and retrieving of
signatures, and possibly the storage of the documents as well.
We explore the use of WiFi fingerprints as the main component
of a location dependent signature, and define a measure of
dissimilarity that is mostly monotonic with real distance. We
show that typical WiFi deployments enable efficient retrieval
of documents for two popular queries: closest document, and
all documents in a radius.
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